当前位置: X-MOL 学术SIAM J. Numer. Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The ([math], [math])-HDG Method for the Helmholtz Equation with Large Wave Number
SIAM Journal on Numerical Analysis ( IF 2.8 ) Pub Date : 2024-06-12 , DOI: 10.1137/23m1562639
Bingxin Zhu 1 , Haijun Wu 2
Affiliation  

SIAM Journal on Numerical Analysis, Volume 62, Issue 3, Page 1394-1419, June 2024.
Abstract. In this paper, we analyze a hybridizable discontinuous Galerkin method for the Helmholtz equation with large wave number, which uses piecewise polynomials of degree of [math] to approximate the potential [math] and its traces and piecewise polynomials of degree of [math] for the flux [math]. It is proved that [math] and [math] hold under the conditions that [math] is sufficiently small and that the penalty parameter [math], where [math] is the mesh size. Numerical experiments are proposed to verify our theoretical findings and to show that the pollution error may be greatly reduced by tuning the penalty parameter.


中文翻译:


大波数亥姆霍兹方程的([math],[math])-HDG方法



《SIAM 数值分析杂志》,第 62 卷,第 3 期,第 1394-1419 页,2024 年 6 月。

抽象的。在本文中,我们分析了大波数亥姆霍兹方程的可混合间断伽辽金方法,该方法使用[math]次数的分段多项式来逼近势[math]及其迹以及[math]次数的分段多项式通量[数学]。证明了[math]和[math]在[math]足够小且惩罚参数[math]成立的条件下成立,其中[math]是网格尺寸。提出了数值实验来验证我们的理论结果,并表明通过调整惩罚参数可以大大减少污染误差。
更新日期:2024-06-12
down
wechat
bug