当前位置: X-MOL 学术AlChE J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Insight into the complex ammonia decomposition/oxidation kinetics in ammonia protonic ceramic fuel cells via elementary modeling
AIChE Journal ( IF 3.5 ) Pub Date : 2024-06-10 , DOI: 10.1002/aic.18497
Jiacheng You 1 , Jiangping Chen 1 , Shunli Liu 1 , Huihuang Fang 1, 2 , Fulan Zhong 1, 2 , Yu Luo 1, 2 , Lilong Jiang 1, 2
Affiliation  

The protonic ceramic fuel cells (PCFCs) can convert the chemical energy of fuel directly into electric power, with the advantages of high efficiency and alternative fuel range at intermediate temperatures. Ammonia has been regarded as a promising fuel for PCFCs due to its carbon-free and hydrogen-rich properties, high volumetric energy density and easy storage/transportation. However, the performance of ammonia PCFCs (NH3-PCFCs) is far inferior to the hydrogen PCFCs (H2-PCFCs) because of the sluggish and complex kinetics at anodes. In this study, we established an elementary reaction kinetic model for NH3-PCFCs, investigated the effect of reaction parameters, anode components and reaction partition, and explored the coupling mechanism between the ammonia decomposition and electrochemical reaction. Importantly, the ammonia decomposition and electrochemical reaction can be flexibly regulated by adjusting anode parameters, then affecting the performance ratio of NH3-PCFCs and H2-PCFCs. The detailed rate-determining steps were further identified by experimental and model analysis. Thus, the ammonia/hydrogen performance ratio of the cell can exceed 95% at 550°C after accelerating the ammonia decomposition reaction. Our work provides insights into the kinetics in NH3-PCFCs for improving their performance with optimization.

中文翻译:


通过基本建模深入了解氨质子陶瓷燃料电池中复杂的氨分解/氧化动力学



质子陶瓷燃料电池(PCFC)可以将燃料的化学能直接转化为电能,具有高效率和中温替代燃料范围的优点。氨由于其无碳、富氢的特性、高体积能量密度和易于储存/运输而被认为是一种有前景的 PCFC 燃料。然而,由于阳极动力学缓慢且复杂,氨PCFC(NH 3 -PCFC)的性能远不如氢PCFC(H 2 -PCFC)。本研究建立了NH 3 -PCFCs的基元反应动力学模型,研究了反应参数、阳极组分和反应分配的影响,并探讨了氨分解与电化学反应之间的耦合机制。重要的是,通过调节阳极参数可以灵活调控氨分解和电化学反应,从而影响NH 3 -PCFCs和H 2 -PCFCs的性能比。通过实验和模型分析进一步确定了详细的速率确定步骤。因此,加速氨分解反应后,电池的氨/氢性能比在550℃时可以超过95%。我们的工作深入了解 NH 3 -PCFC 的动力学,从而通过优化提高其性能。
更新日期:2024-06-10
down
wechat
bug