当前位置: X-MOL 学术Nat. Microbiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pseudomonas aeruginosa breaches respiratory epithelia through goblet cell invasion in a microtissue model
Nature Microbiology ( IF 20.5 ) Pub Date : 2024-06-10 , DOI: 10.1038/s41564-024-01718-6
A Leoni Swart 1 , Benoît-Joseph Laventie 1 , Rosmarie Sütterlin 1 , Tina Junne 1 , Luisa Lauer 1 , Pablo Manfredi 1 , Sandro Jakonia 1 , Xiao Yu 2 , Evdoxia Karagkiozi 2 , Rusudan Okujava 2 , Urs Jenal 1
Affiliation  

Pseudomonas aeruginosa, a leading cause of severe hospital-acquired pneumonia, causes infections with up to 50% mortality rates in mechanically ventilated patients. Despite some knowledge of virulence factors involved, it remains unclear how P. aeruginosa disseminates on mucosal surfaces and invades the tissue barrier. Using infection of human respiratory epithelium organoids, here we observed that P. aeruginosa colonization of apical surfaces is promoted by cyclic di-GMP-dependent asymmetric division. Infection with mutant strains revealed that Type 6 Secretion System activities promote preferential invasion of goblet cells. Type 3 Secretion System activity by intracellular bacteria induced goblet cell death and expulsion, leading to epithelial rupture which increased bacterial translocation and dissemination to the basolateral epithelium. These findings show that under physiological conditions, P. aeruginosa uses coordinated activity of a specific combination of virulence factors and behaviours to invade goblet cells and breach the epithelial barrier from within, revealing mechanistic insight into lung infection dynamics.



中文翻译:


铜绿假单胞菌通过微组织模型中的杯状细胞入侵破坏呼吸道上皮



铜绿假单胞菌是严重医院获得性肺炎的主要原因,它引起的感染导致机械通气患者的死亡率高达 50%。尽管对所涉及的毒力因子有一些了解,但仍不清楚铜绿假单胞菌如何在粘膜表面传播并侵入组织屏障。通过感染人类呼吸道上皮类器官,我们观察到环二 GMP 依赖性不对称分裂促进了铜绿假单胞菌在顶端表面的定植。突变菌株的感染表明,6 型分泌系统活性促进了杯状细胞的优先侵袭。细胞内细菌的 3 型分泌系统活性诱导杯状细胞死亡和排出,导致上皮破裂,从而增加细菌易位和传播到基底外侧上皮。这些发现表明,在生理条件下,铜绿假单胞菌利用毒力因子和行为的特定组合的协调活性来侵入杯状细胞并从内部突破上皮屏障,揭示了对肺部感染动态的机制洞察。

更新日期:2024-06-10
down
wechat
bug