当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Achieving reversible Zn chemistry by constructing a built-in internal electric field to dynamically eliminate local charge accumulation
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-06-07 , DOI: 10.1039/d4ee01313a
Xueru Yang 1, 2 , Zhaoyu Zhang 1, 2 , Yufei Zhang 1, 2 , Wencheng Du 1, 2 , Minghui Ye 1, 2 , Yongchao Tang 1, 2 , Zhipeng Wen 1, 2 , Xiaoqing Liu 1, 2 , Cheng Chao Li 1, 2
Affiliation  

The irreversible chemistry of the Zn anode, attributed to dendrite growth and parasitic side reactions, is a major constraint on the practical application of aqueous zinc-ion batteries. Herein, polyelectrolyte complexes (CPs) containing rich quaternary ammonium and carboxylate groups were developed as artificial protective layers to systematically and efficiently regulate Zn plating/stripping. By virtue of their unique amphoteric characteristic, a self-adaptive built-in electric field could be generated at the interface. Comprehensive experimental and computational analyses demonstrated that the as-generated built-in internal electric field caused prominent divergence of surface properties. The enriched Zn2+ flux and homogenized charge distribution could dynamically eliminate local charge accumulation at the interface and offer highly oriented, dendrite-free Zn deposition. Owing to the intrinsic self-healing feature of the CPs, the as-proposed electric field modulation strategy presents long-term effectiveness. Correspondingly, the cycling durability of the Zn anode was prolonged from 91 to 6330 h at 0.5 mA cm−2 (∼70-fold enhancement). A promoted electrochemical performance of full cells was also demonstrated by coupling the CP-protected Zn anode with I2 or NH4V4O10 cathodes. In particular, a remarkable capacity maintenance was observed with Zn‖I2 cells, with an ultraslow decay rate of 0.005‰ per cycle after 30000 cycles (over 290 days).

中文翻译:


通过构建内置内部电场动态消除局部电荷积累,实现可逆锌化学



由于枝晶生长和寄生副反应,锌阳极的不可逆化学性质是水系锌离子电池实际应用的主要限制。在此,开发了含有丰富季铵和羧酸盐基团的聚电解质复合物(CP)作为人工保护层,以系统有效地调节镀锌/剥离。凭借其独特的两性特性,可以在界面处产生自适应的内置电场。综合实验和计算分析表明,所产生的内置内部电场导致表面特性的显着差异。富集的 Zn 2+ 通量和均匀的电荷分布可以动态消除界面处的局部电荷积累,并提供高度定向、无枝晶的 Zn 沉积。由于CP固有的自愈特性,所提出的电场调制策略具有长期有效性。相应地,Zn 阳极的循环耐久性在 0.5 mA cm −2 下从 91 小时延长至 6330 小时(提高了约 70 倍)。通过将 CP 保护的 Zn 阳极与 I 2 或 NH 4 V 4 O 10 电池中观察到显着的容量维持,在 30000 次循环(超过 290 天)后,每个循环的超慢衰减率为 0.005‰。
更新日期:2024-06-07
down
wechat
bug