当前位置: X-MOL 学术Astron. Astrophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simulation-based inference with neural posterior estimation applied to X-ray spectral fitting
Astronomy & Astrophysics ( IF 5.4 ) Pub Date : 2024-06-06 , DOI: 10.1051/0004-6361/202449214
Didier Barret , Simon Dupourqué

Context. Neural networks are being extensively used for modeling data, especially in the case where no likelihood can be formulated.Aims. Although in the case of X-ray spectral fitting the likelihood is known, we aim to investigate the ability of neural networks to recover the model parameters and their associated uncertainties and to compare their performances with standard X-ray spectral fitting, whether following a frequentist or Bayesian approach.Methods. We applied a simulation-based inference with neural posterior estimation (SBI-NPE) to X-ray spectra. We trained a network with simulated spectra generated from a multiparameter source emission model folded through an instrument response, so that it learns the mapping between the simulated spectra and their parameters and returns the posterior distribution. The model parameters are sampled from a predefined prior distribution. To maximize the efficiency of the training of the neural network, while limiting the size of the training sample to speed up the inference, we introduce a way to reduce the range of the priors, either through a classifier or a coarse and quick inference of one or multiple observations. For the sake of demonstrating working principles, we applied the technique to data generated from and recorded by the NICER X-ray instrument, which is a medium-resolution X-ray spectrometer covering the 0.2–12 keV band. We consider here simple X-ray emission models with up to five parameters.Results. SBI-NPE is demonstrated to work equally well as standard X-ray spectral fitting, both in the Gaussian and Poisson regimes, on simulated and real data, yielding fully consistent results in terms of best-fit parameters and posterior distributions. The inference time is comparable to or smaller than the one needed for Bayesian inference when involving the computation of large Markov chain Monte Carlo chains to derive the posterior distributions. On the other hand, once properly trained, an amortized SBI-NPE network generates the posterior distributions in no time (less than 1 second per spectrum on a 6-core laptop). We show that SBI-NPE is less sensitive to local minima trapping than standard fit statistic minimization techniques. With a simple model, we find that the neural network can be trained equally well on dimension-reduced spectra via a principal component decomposition, leading to a faster inference time with no significant degradation of the posteriors.Conclusions. We show that simulation-based inference with neural posterior estimation is a complementary tool for X-ray spectral analysis. The technique is robust and produces well-calibrated posterior distributions. It holds great potential for its integration in pipelines developed for processing large data sets. The code developed to demonstrate the first working principles of the technique introduced here is released through a Python package called SIXSA (Simulation-based Inference for X-ray Spectral Analysis), which is available from GitHub.

中文翻译:


基于模拟的推理,将神经后验估计应用于 X 射线光谱拟合



语境。神经网络被广泛用于数据建模,特别是在无法制定可能性的情况下。目标。尽管在 X 射线光谱拟合的情况下,可能性是已知的,但我们的目标是研究神经网络恢复模型参数及其相关不确定性的能力,并将其性能与标准 X 射线光谱拟合进行比较,无论是否遵循频率论或贝叶斯方法。方法。我们将基于模拟的神经后验估计 (SBI-NPE) 推理应用于 X 射线光谱。我们使用通过仪器响应折叠的多参数源发射模型生成的模拟光谱来训练网络,以便它学习模拟光谱与其参数之间的映射并返回后验分布。模型参数是从预定义的先验分布中采样的。为了最大限度地提高神经网络的训练效率,同时限制训练样本的大小以加快推理速度,我们引入了一种减少先验范围的方法,可以通过分类器,也可以通过粗略快速的推理或多次观察。为了演示工作原理,我们将该技术应用于 NICER X 射线仪器生成和记录的数据,该仪器是覆盖 0.2-12 keV 波段的中等分辨率 X 射线光谱仪。我们在这里考虑具有最多五个参数的简单 X 射线发射模型。结果。事实证明,SBI-NPE 在高斯和泊松体系中、在模拟数据和真实数据上与标准 X 射线光谱拟合同样有效,在最佳拟合参数和后验分布方面产生完全一致的结果。 当涉及计算大马尔可夫链蒙特卡罗链以导出后验分布时,推理时间与贝叶斯推理所需的时间相当或小于贝叶斯推理所需的时间。另一方面,一旦经过适当的训练,摊销 SBI-NPE 网络会立即生成后验分布(在 6 核笔记本电脑上每个频谱不到 1 秒)。我们表明,与标准拟合统计最小化技术相比,SBI-NPE 对局部最小值捕获不太敏感。通过一个简单的模型,我们发现神经网络可以通过主成分分解在降维谱上得到同样好的训练,从而导致更快的推理时间,而后验没有显着退化。结论。我们证明,基于模拟的推理和神经后验估计是 X 射线光谱分析的补充工具。该技术非常稳健,可以产生经过良好校准的后验分布。它在集成到为处理大型数据集而开发的管道中具有巨大的潜力。为演示此处介绍的技术的第一个工作原理而开发的代码通过名为 SIXSA(基于模拟的 X 射线光谱分析推理)的 Python 包发布,该包可从 GitHub 获取。
更新日期:2024-06-06