Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Mailed feedback to primary care physicians on antibiotic prescribing for patients aged 65 years and older: pragmatic, factorial randomised controlled trial
The BMJ ( IF 93.6 ) Pub Date : 2024-06-05 , DOI: 10.1136/bmj-2024-079329 Kevin L Schwartz 1, 2, 3, 4 , Jennifer Shuldiner 5, 6 , Bradley J Langford 3, 7 , Kevin A Brown 2, 3, 7 , Susan E Schultz 2 , Valerie Leung 7, 8 , Nick Daneman 2, 6, 7, 9 , Mina Tadrous 2, 5, 10 , Holly O Witteman 11, 12 , Gary Garber 13, 14 , Jeremy M Grimshaw 14, 15 , Jerome A Leis 9, 13 , Justin Presseau 15, 16 , Michael S Silverman 17 , Monica Taljaard 15, 16 , Tara Gomes 2, 4, 6, 10 , Meagan Lacroix 5 , Jamie Brehaut 15, 16 , Kednapa Thavorn 2, 15, 16 , Sharon Gushue 18 , Lindsay Friedman 7 , Merrick Zwarenstein 19 , Noah Ivers 2, 5, 20
The BMJ ( IF 93.6 ) Pub Date : 2024-06-05 , DOI: 10.1136/bmj-2024-079329 Kevin L Schwartz 1, 2, 3, 4 , Jennifer Shuldiner 5, 6 , Bradley J Langford 3, 7 , Kevin A Brown 2, 3, 7 , Susan E Schultz 2 , Valerie Leung 7, 8 , Nick Daneman 2, 6, 7, 9 , Mina Tadrous 2, 5, 10 , Holly O Witteman 11, 12 , Gary Garber 13, 14 , Jeremy M Grimshaw 14, 15 , Jerome A Leis 9, 13 , Justin Presseau 15, 16 , Michael S Silverman 17 , Monica Taljaard 15, 16 , Tara Gomes 2, 4, 6, 10 , Meagan Lacroix 5 , Jamie Brehaut 15, 16 , Kednapa Thavorn 2, 15, 16 , Sharon Gushue 18 , Lindsay Friedman 7 , Merrick Zwarenstein 19 , Noah Ivers 2, 5, 20
Affiliation
Objectives To evaluate whether providing family physicians with feedback on their antibiotic prescribing compared with that of their peers reduces antibiotic prescriptions. To also identify effects on antibiotic prescribing from case-mix adjusted feedback reports and messages emphasising antibiotic associated harms. Design Pragmatic, factorial randomised controlled trial. Setting Primary care physicians in Ontario, Canada Participants All primary care physicians were randomly assigned a group if they were eligible and actively prescribing antibiotics to patients 65 years or older. Physicians were excluded if had already volunteered to receive antibiotic prescribing feedback from another agency, or had opted out of the trial. Intervention A letter was mailed in January 2022 to physicians with peer comparison antibiotic prescribing feedback compared with the control group who did not receive a letter (4:1 allocation). The intervention group was further randomised in a 2x2 factorial trial to evaluate case-mix adjusted versus unadjusted comparators, and emphasis, or not, on harms of antibiotics. Main outcome measures Antibiotic prescribing rate per 1000 patient visits for patients 65 years or older six months after intervention. Analysis was in the modified intention-to-treat population using Poisson regression. Results 5046 physicians were included and analysed: 1005 in control group and 4041 in intervention group (1016 case-mix adjusted data and harms messaging, 1006 with case-mix adjusted data and no harms messaging, 1006 unadjusted data and harms messaging, and 1013 unadjusted data and no harms messaging). At six months, mean antibiotic prescribing rate was 59.4 (standard deviation 42.0) in the control group and 56.0 (39.2) in the intervention group (relative rate 0.95 (95% confidence interval 0.94 to 0.96). Unnecessary antibiotic prescribing (0.89 (0.86 to 0.92)), prolonged duration prescriptions defined as more than seven days (0.85 (0.83 to 0.87)), and broad spectrum prescribing (0.94 (0.92 to 0.95)) were also significantly lower in the intervention group compared with the control group. Results were consistent at 12 months post intervention. No significant effect was seen for including emphasis on harms messaging. A small increase in antibiotic prescribing with case-mix adjusted reports was noted (1.01 (1.00 to 1.03)). Conclusions Peer comparison audit and feedback letters significantly reduced overall antibiotic prescribing with no benefit of case-mix adjustment or harms messaging. Antibiotic prescribing audit and feedback is a scalable and effective intervention and should be a routine quality improvement initiative in primary care. Trial registration ClinicalTrials.gov [NCT04594200][1] The dataset from this study is held securely in coded form at ICES. While legal data sharing agreements between ICES and data providers (eg, healthcare organizations and government) prohibit ICES from making the dataset publicly available, access may be granted to those who meet pre-specified criteria for confidential access, available at [www.ices.on.ca/DAS][2] (email: das@ices.on.ca). The full dataset creation plan and underlying analytic code are available from the authors upon request, understanding that the computer programs may rely upon coding templates or macros that are unique to ICES and are therefore either inaccessible or may require modification. [1]: /lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT04594200&atom=%2Fbmj%2F385%2Fbmj-2024-079329.atom [2]: http://www.ices.on.ca/DAS
中文翻译:
向初级保健医生邮寄有关 65 岁及以上患者抗生素处方的反馈:务实、析因随机对照试验
目的 评估向家庭医生提供与同龄人相比的抗生素处方反馈是否会减少抗生素处方。还根据病例组合调整的反馈报告和强调抗生素相关危害的信息来确定对抗生素处方的影响。设计务实的析因随机对照试验。在加拿大安大略省设置初级保健医生参与者 如果所有初级保健医生符合条件并积极为 65 岁或以上的患者开抗生素处方,则所有初级保健医生都会被随机分配到一个组。如果医生已经自愿接受其他机构的抗生素处方反馈,或者选择退出试验,则被排除在外。干预 2022 年 1 月,我们向医生邮寄了一封信函,其中包含同行比较抗生素处方反馈,与未收到信函的对照组进行比较(4:1 分配)。干预组在 2x2 析因试验中进一步随机化,以评估病例组合调整与未调整的比较,并强调或不强调抗生素的危害。主要结果衡量干预后 6 个月内 65 岁或以上患者每 1000 名就诊患者的抗生素处方率。使用泊松回归对修改后的意向治疗人群进行分析。结果 纳入并分析了 5046 名医生:对照组 1005 名,干预组 4041 名(1016 名经过病例组合调整的数据和危害信息,1006 名经过病例组合调整的数据和无危害信息,1006 名未经调整的数据和危害信息,1013 名未经调整的数据和危害信息)数据和无害消息)。六个月时,对照组的平均抗生素处方率为 59.4(标准差 42.0),干预组为 56.0(39.2)(相对率 0.5)。95(95% 置信区间为 0.94 至 0.96)。干预组中不必要的抗生素处方(0.89(0.86至0.92))、持续时间超过7天的处方(0.85(0.83至0.87))和广谱处方(0.94(0.92至0.95))也显着降低与对照组相比。干预后 12 个月的结果是一致的。强调危害信息传递并没有发现显着效果。根据病例组合调整报告,抗生素处方略有增加(1.01(1.00 至 1.03))。结论 同行比较审核和反馈信显着减少了总体抗生素处方,没有病例组合调整的好处或有害信息传递。抗生素处方审核和反馈是一种可扩展且有效的干预措施,应该成为初级保健的常规质量改进举措。试验注册 ClinicalTrials.gov [NCT04594200][1] 本研究的数据集以编码形式安全地保存在 ICES 中。虽然 ICES 和数据提供商(例如医疗保健组织和政府)之间的合法数据共享协议禁止 ICES 公开提供数据集,但可以向符合预先指定的保密访问标准的人员授予访问权限,该标准可在 [www.ices. on.ca/DAS][2](电子邮件:das@ices.on.ca)。作者可根据要求提供完整的数据集创建计划和底层分析代码,并理解计算机程序可能依赖于 ICES 特有的编码模板或宏,因此无法访问或可能需要修改。 [1]:/lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT04594200&atom=%2Fbmj%2F385%2Fbmj-2024-079329.atom [2]:http://www.ices.on。钙/DAS
更新日期:2024-06-06
中文翻译:
向初级保健医生邮寄有关 65 岁及以上患者抗生素处方的反馈:务实、析因随机对照试验
目的 评估向家庭医生提供与同龄人相比的抗生素处方反馈是否会减少抗生素处方。还根据病例组合调整的反馈报告和强调抗生素相关危害的信息来确定对抗生素处方的影响。设计务实的析因随机对照试验。在加拿大安大略省设置初级保健医生参与者 如果所有初级保健医生符合条件并积极为 65 岁或以上的患者开抗生素处方,则所有初级保健医生都会被随机分配到一个组。如果医生已经自愿接受其他机构的抗生素处方反馈,或者选择退出试验,则被排除在外。干预 2022 年 1 月,我们向医生邮寄了一封信函,其中包含同行比较抗生素处方反馈,与未收到信函的对照组进行比较(4:1 分配)。干预组在 2x2 析因试验中进一步随机化,以评估病例组合调整与未调整的比较,并强调或不强调抗生素的危害。主要结果衡量干预后 6 个月内 65 岁或以上患者每 1000 名就诊患者的抗生素处方率。使用泊松回归对修改后的意向治疗人群进行分析。结果 纳入并分析了 5046 名医生:对照组 1005 名,干预组 4041 名(1016 名经过病例组合调整的数据和危害信息,1006 名经过病例组合调整的数据和无危害信息,1006 名未经调整的数据和危害信息,1013 名未经调整的数据和危害信息)数据和无害消息)。六个月时,对照组的平均抗生素处方率为 59.4(标准差 42.0),干预组为 56.0(39.2)(相对率 0.5)。95(95% 置信区间为 0.94 至 0.96)。干预组中不必要的抗生素处方(0.89(0.86至0.92))、持续时间超过7天的处方(0.85(0.83至0.87))和广谱处方(0.94(0.92至0.95))也显着降低与对照组相比。干预后 12 个月的结果是一致的。强调危害信息传递并没有发现显着效果。根据病例组合调整报告,抗生素处方略有增加(1.01(1.00 至 1.03))。结论 同行比较审核和反馈信显着减少了总体抗生素处方,没有病例组合调整的好处或有害信息传递。抗生素处方审核和反馈是一种可扩展且有效的干预措施,应该成为初级保健的常规质量改进举措。试验注册 ClinicalTrials.gov [NCT04594200][1] 本研究的数据集以编码形式安全地保存在 ICES 中。虽然 ICES 和数据提供商(例如医疗保健组织和政府)之间的合法数据共享协议禁止 ICES 公开提供数据集,但可以向符合预先指定的保密访问标准的人员授予访问权限,该标准可在 [www.ices. on.ca/DAS][2](电子邮件:das@ices.on.ca)。作者可根据要求提供完整的数据集创建计划和底层分析代码,并理解计算机程序可能依赖于 ICES 特有的编码模板或宏,因此无法访问或可能需要修改。 [1]:/lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT04594200&atom=%2Fbmj%2F385%2Fbmj-2024-079329.atom [2]:http://www.ices.on。钙/DAS