当前位置: X-MOL 学术Lab Chip › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A fluid-walled microfluidic platform for human neuron microcircuits and directed axotomy
Lab on a Chip ( IF 6.1 ) Pub Date : 2024-06-06 , DOI: 10.1039/d4lc00107a
Federico Nebuloni 1, 2 , Quyen B Do 3, 4, 5 , Peter R Cook 2 , Edmond J Walsh 1 , Richard Wade-Martins 3, 4, 5
Affiliation  

In our brains, different neurons make appropriate connections; however, there remain few in vitro models of such circuits. We use an open microfluidic approach to build and study neuronal circuits in vitro in ways that fit easily into existing bio-medical workflows. Dumbbell-shaped circuits are built in minutes in standard Petri dishes; the aqueous phase is confined by fluid walls – interfaces between cell-growth medium and an immiscible fluorocarbon, FC40. Conditions are established that ensure post-mitotic neurons derived from human induced pluripotent stem cells (iPSCs) plated in one chamber of a dumbbell remain where deposited. After seeding cortical neurons on one side, axons grow through the connecting conduit to ramify amongst striatal neurons on the other – an arrangement mimicking unidirectional cortico-striatal connectivity. We also develop a moderate-throughput non-contact axotomy assay. Cortical axons in conduits are severed by a media jet; then, brain-derived neurotrophic factor and striatal neurons in distal chambers promote axon regeneration. As additional conduits and chambers are easily added, this opens up the possibility of mimicking complex neuronal networks, and screening drugs for their effects on connectivity.

中文翻译:


用于人类神经元微电路和定向轴索切除术的液壁微流体平台



在我们的大脑中,不同的神经元会建立适当的连接;然而,这种电路的体外模型仍然很少。我们使用开放式微流体方法以轻松适应现有生物医学工作流程的方式在体外构建和研究神经元回路。哑铃形电路在标准培养皿中只需几分钟即可构建;水相受到流体壁的限制,流体壁是细胞生长介质和不混溶的碳氟化合物 FC40 之间的界面。建立条件以确保来自人诱导多能干细胞(iPSC)的有丝分裂后神经元镀在哑铃的一个室中保留在沉积的地方。在一侧接种皮质神经元后,轴突通过连接导管生长,在另一侧的纹状体神经元中分叉——一种模仿单向皮质-纹状体连接的排列。我们还开发了一种中等通量的非接触式轴切术测定法。导管中的皮质轴突被介质射流切断;然后,脑源性神经营养因子和远端腔室的纹状体神经元促进轴突再生。由于可以轻松添加额外的导管和腔室,因此可以模拟复杂的神经元网络,并筛选药物对连接的影响。
更新日期:2024-06-06
down
wechat
bug