Nature Nanotechnology ( IF 38.1 ) Pub Date : 2024-06-06 , DOI: 10.1038/s41565-024-01677-3 Bruno Melo 1, 2 , Marc T Cuairan 1, 2 , Grégoire F M Tomassi 1, 2 , Nadine Meyer 1, 2 , Romain Quidant 1, 2
By isolating from the environment and precisely controlling mesoscopic objects, levitation in vacuum has evolved into a versatile technique that has already benefited diverse scientific directions, from force sensing and thermodynamics to materials science and chemistry. It also holds great promise for advancing the study of quantum mechanics in the unexplored macroscopic regime. However, most current levitation platforms are complex and bulky. Recent efforts in miniaturization of vacuum levitation set-ups have comprised electrostatic and optical traps, but robustness is still a concern for integration into confined settings, such as cryostats or portable devices. Here we show levitation and motion control in high vacuum of a silica nanoparticle at the surface of a hybrid optical–electrostatic chip. By combining fibre-based optical trapping and sensitive position detection with cold damping through planar electrodes, we cool the particle motion to a few hundred phonons. We envisage that our fully integrated platform is the starting point for on-chip devices combining integrated photonics and nanophotonics with precisely engineered electric potentials, enhancing control over the particle motion towards complex state preparation and read-out.
中文翻译:
芯片上的真空悬浮和运动控制
通过与环境隔离并精确控制介观物体,真空悬浮已发展成为一种多功能技术,已经使从力传感和热力学到材料科学和化学等多个科学方向受益。它还为在未探索的宏观体系中推进量子力学的研究带来了巨大的希望。然而,目前大多数悬浮平台都复杂且庞大。最近在真空悬浮装置小型化方面的努力包括静电和光学陷阱,但鲁棒性仍然是集成到低温恒温器或便携式设备等受限环境中的一个问题。在这里,我们展示了混合光学静电芯片表面二氧化硅纳米颗粒在高真空下的悬浮和运动控制。通过将基于光纤的光学捕获和敏感位置检测与平面电极的冷阻尼相结合,我们将粒子运动冷却到数百个声子。我们设想,我们的完全集成平台是片上设备的起点,将集成光子学和纳米光子学与精确设计的电势相结合,增强对粒子运动的控制,以实现复杂的状态准备和读出。