当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Polyphenylene Ionomer as a Fortifier of Microphase Separation in Highly Conductive and Durable Polybenzimidazole-Based High-Temperature Proton Exchange Membranes
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-06-05 , DOI: 10.1002/aenm.202400751 Yu Bai 1 , Min Xiao 1 , Chengxin Wang 1 , Shuanjin Wang 1 , Yuezhong Meng 1, 2, 3, 4 , Kenji Miyatake 5, 6
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-06-05 , DOI: 10.1002/aenm.202400751 Yu Bai 1 , Min Xiao 1 , Chengxin Wang 1 , Shuanjin Wang 1 , Yuezhong Meng 1, 2, 3, 4 , Kenji Miyatake 5, 6
Affiliation
Acid-functionalized polymers enhance the performance of phosphoric-acid-doped polybenzimidazoles (PA/PBIs); however, studies on examining the mechanisms driving these enhancements are scarce. Furthermore, the nanophase morphology of PA-dependent proton-exchange membranes has been rarely explored, despite its direct role in the distribution of PA and protonic conduction. In this study, theoretical and experimental analyses to evaluate the microphase separation, particularly the formation and in situ transformation of a two-phase interface, in a defect-free polyphenylene ionomer (SPP-QP) with excellent integrity are performed. SPP-QP serves as a fortifying agent with an enhanced microphase-separation ability within PA/PBI-based membranes. Specifically, the distinct swelling behavior of PA results in the formation of PA-rich and PA-poor regions. Thus, the formation of a durable interface that is impervious to PA degradation between SPP-QP and PBI is critical for facilitating microphase separation. A single cell composed of the composite membrane offers a peak power density of 719 mW cm−2 at 160 °C. Moreover, the durability of a single cell is much longer than 150 h. The results obtained in this study provide insights into the micromorphology and membrane properties observed in the presence of PA.
中文翻译:
聚亚苯基离聚物作为高导电且耐用的聚苯并咪唑基高温质子交换膜中微相分离的增强剂
酸功能化聚合物可增强磷酸掺杂聚苯并咪唑 (PA/PBI) 的性能;然而,关于检查驱动这些增强的机制的研究很少。此外,尽管 PA 依赖性质子交换膜的纳米相形态在 PA 分布和质子传导中发挥着直接作用,但其纳米相形态却很少被研究。在这项研究中,进行了理论和实验分析,以评估具有优异完整性的无缺陷聚苯离聚物(SPP-QP)的微相分离,特别是两相界面的形成和原位转变。 SPP-QP 作为增强剂,在 PA/PBI 膜内具有增强的微相分离能力。具体来说,PA 独特的溶胀行为导致形成富含 PA 和缺乏 PA 的区域。因此,SPP-QP 和 PBI 之间形成不受 PA 降解影响的持久界面对于促进微相分离至关重要。由复合膜组成的单电池在160°C时提供719 mW cm -2的峰值功率密度。而且,单电芯的耐久性远大于150小时。本研究获得的结果提供了对 PA 存在下观察到的微形态和膜特性的见解。
更新日期:2024-06-05
中文翻译:
聚亚苯基离聚物作为高导电且耐用的聚苯并咪唑基高温质子交换膜中微相分离的增强剂
酸功能化聚合物可增强磷酸掺杂聚苯并咪唑 (PA/PBI) 的性能;然而,关于检查驱动这些增强的机制的研究很少。此外,尽管 PA 依赖性质子交换膜的纳米相形态在 PA 分布和质子传导中发挥着直接作用,但其纳米相形态却很少被研究。在这项研究中,进行了理论和实验分析,以评估具有优异完整性的无缺陷聚苯离聚物(SPP-QP)的微相分离,特别是两相界面的形成和原位转变。 SPP-QP 作为增强剂,在 PA/PBI 膜内具有增强的微相分离能力。具体来说,PA 独特的溶胀行为导致形成富含 PA 和缺乏 PA 的区域。因此,SPP-QP 和 PBI 之间形成不受 PA 降解影响的持久界面对于促进微相分离至关重要。由复合膜组成的单电池在160°C时提供719 mW cm -2的峰值功率密度。而且,单电芯的耐久性远大于150小时。本研究获得的结果提供了对 PA 存在下观察到的微形态和膜特性的见解。