当前位置:
X-MOL 学术
›
ACS Appl. Nano Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Boron-Doped Carbon Quantum Dot/Carbon Nanorod/Graphitic Carbon Nitride Composites for Photocatalytic Degradation of Organic Pollutants
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2024-06-03 , DOI: 10.1021/acsanm.4c01800
Xufang Zhang 1, 2 , Mengting Wu 1 , Aiqin Hou 1 , Kongliang Xie 1 , Fengzhen Li 1 , Aiqin Gao 1
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2024-06-03 , DOI: 10.1021/acsanm.4c01800
Xufang Zhang 1, 2 , Mengting Wu 1 , Aiqin Hou 1 , Kongliang Xie 1 , Fengzhen Li 1 , Aiqin Gao 1
Affiliation
![]() |
Graphitic carbon nitride (g-C3N4) has received great attention due to its photocatalytic properties and visible spectrum absorption. However, it has been a challenge for the improvement of the electron–hole separation. Herein, hybridized g-C3N4containing boron–carbon quantum dots, integrated with boron-doped carbon quantum dots-modified carbon nanorods (CNRs), was designed and fabricated. The boron atoms were doped on carbon quantum dots, and then B-CQDs were assembled on cellulose nanocrystal (CNC) photonic crystals. Using CNC as a nanorod template, carbon nanorods modified with boron-doped CQDs were obtained. Then hybridized g-C3N4 composites containing boron–carbon quantum dots (B-CQDs/CNR/g-C3N4) were fabricated. The introduction of boron atoms into CQDs and carbon nanorods improved charge separation and electron conduction. This hybridized B-CQDs/CNR/g-C3N4 significantly elevates the spectral absorption efficiency and charge separation under visible light. It effectively improves the activation of molecular oxygen, leading to the generation of high-energy hydroxyl and superoxide radicals. This composition demonstrates remarkable degradation activity and cycle stability in degrading a nonbiodegradable organic pollutant, tetracycline (TC), suggesting promising applications in energy and environmental fields.
中文翻译:
掺硼碳量子点/碳纳米棒/石墨氮化碳复合材料光催化降解有机污染物
石墨氮化碳(g-C 3 N 4 )由于其光催化性能和可见光谱吸收而受到广泛关注。然而,电子空穴分离的改善一直是一个挑战。在此,设计并制造了含有硼-碳量子点的杂化g-C 3 N 4 ,与硼掺杂碳量子点修饰的碳纳米棒(CNR)集成。将硼原子掺杂在碳量子点上,然后将 B-CQD 组装在纤维素纳米晶体 (CNC) 光子晶体上。以CNC为纳米棒模板,获得了硼掺杂CQDs修饰的碳纳米棒。然后杂化含有硼碳量子点的 g-C 3 N 4 复合材料(B-CQDs/CNR/g-C 3 N 4 )捏造的。将硼原子引入 CQD 和碳纳米棒中可以改善电荷分离和电子传导。这种杂化的B-CQDs/CNR/g-C 3 N 4 显着提高了可见光下的光谱吸收效率和电荷分离。它有效提高分子氧的活化,导致高能羟基和超氧自由基的产生。该组合物在降解不可生物降解的有机污染物四环素(TC)方面表现出显着的降解活性和循环稳定性,表明在能源和环境领域具有广阔的应用前景。
更新日期:2024-06-03
中文翻译:

掺硼碳量子点/碳纳米棒/石墨氮化碳复合材料光催化降解有机污染物
石墨氮化碳(g-C 3 N 4 )由于其光催化性能和可见光谱吸收而受到广泛关注。然而,电子空穴分离的改善一直是一个挑战。在此,设计并制造了含有硼-碳量子点的杂化g-C 3 N 4 ,与硼掺杂碳量子点修饰的碳纳米棒(CNR)集成。将硼原子掺杂在碳量子点上,然后将 B-CQD 组装在纤维素纳米晶体 (CNC) 光子晶体上。以CNC为纳米棒模板,获得了硼掺杂CQDs修饰的碳纳米棒。然后杂化含有硼碳量子点的 g-C 3 N 4 复合材料(B-CQDs/CNR/g-C 3 N 4 )捏造的。将硼原子引入 CQD 和碳纳米棒中可以改善电荷分离和电子传导。这种杂化的B-CQDs/CNR/g-C 3 N 4 显着提高了可见光下的光谱吸收效率和电荷分离。它有效提高分子氧的活化,导致高能羟基和超氧自由基的产生。该组合物在降解不可生物降解的有机污染物四环素(TC)方面表现出显着的降解活性和循环稳定性,表明在能源和环境领域具有广阔的应用前景。