International Journal of Numerical Methods for Heat & Fluid Flow ( IF 4.0 ) Pub Date : 2024-06-05 , DOI: 10.1108/hff-12-2023-0739 Syed Modassir Hussain , Rohit Sharma , Manoj Kumar Mishra , Jitendra Kumar Singh
Purpose
Nanosized honeycomb-configured materials are used in modern technology, thermal science and chemical engineering due to their high ultra thermic relevance. This study aims to scrutinize the heat transmission features of magnetohydrodynamic (MHD) honeycomb-structured graphene nanofluid flow within two squeezed parallel plates under Joule dissipation and solar thermal radiation impacts.
Design/methodology/approach
Mass, energy and momentum preservation laws are assumed to find the mathematical model. A set of unified ordinary differential equations with nonlinear behavior is used to express the correlated partial differential equations of the established models, adopting a reasonable similarity adjustment. An approximate convergent numerical solution to these equations is evaluated by the shooting scheme with the Runge–Kutta–Fehlberg (RKF45) technique.
Findings
The impression of pertinent evolving parameters on the temperature, fluid velocity, entropy generation, skin friction coefficients and the heat transference rate is explored. Further, the significance of the irreversibility nature of heat transfer due to evolving flow parameters are evaluated. It is noted that the heat transference rate performance is improved due to the imposition of the allied magnetic field, Joule dissipation, heat absorption, squeezing and thermal buoyancy parameters. The entropy generation upsurges due to rising magnetic field strength while its intensification is declined by enhancing the porosity parameter.
Originality/value
The uniqueness of this research work is the numerical evaluation of MHD honeycomb-structured graphene nanofluid flow within two squeezed parallel plates under Joule dissipation and solar thermal radiation impacts. Furthermore, regression models are devised to forecast the correlation between the rate of thermal heat transmission and persistent flow parameters.
中文翻译:
具有熵生成的挤压通道内蜂窝配置的耗散纳米流体流动:回归和数值评估
目的
纳米蜂窝结构材料由于其高超热相关性而被用于现代技术、热科学和化学工程。本研究旨在研究焦耳耗散和太阳热辐射影响下两个挤压平行板内磁流体动力学(MHD)蜂窝结构石墨烯纳米流体流动的传热特征。
设计/方法论/途径
假设质量、能量和动量守恒定律来找到数学模型。采用一组具有非线性行为的统一常微分方程来表达所建立模型的相关偏微分方程,并采用合理的相似性调整。这些方程的近似收敛数值解通过采用龙格-库塔-菲尔伯格 (RKF45) 技术的射击方案进行评估。
发现
探讨了相关演化参数对温度、流体速度、熵产生、表面摩擦系数和传热速率的影响。此外,还评估了由于不断变化的流动参数而导致的传热不可逆性质的重要性。值得注意的是,由于联合磁场、焦耳耗散、吸热、挤压和热浮力参数的施加,传热率性能得到改善。由于磁场强度的增加,熵产生激增,而通过提高孔隙率参数,熵的强度降低。
原创性/价值
这项研究工作的独特之处在于,在焦耳耗散和太阳热辐射影响下,对两个挤压平行板内的 MHD 蜂窝结构石墨烯纳米流体流动进行了数值评估。此外,设计回归模型来预测热传递速率和持续流动参数之间的相关性。