当前位置: X-MOL 学术Astron. Astrophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
MATRICS: The implicit matrix-free Eulerian hydrodynamics solver
Astronomy & Astrophysics ( IF 5.4 ) Pub Date : 2024-06-04 , DOI: 10.1051/0004-6361/202348746
Johannes Meyer , Julio David Melon Fuksman , Hubert Klahr

Context. There exists a zoo of different astrophysical fluid dynamics solvers, most of which are based on an explicit formulation and hence stability-limited to small time steps dictated by the Courant number expressing the local speed of sound. With this limitation, the modeling of low-Mach-number flows requires small time steps that introduce significant numerical diffusion, and a large amount of computational resources are needed. On the other hand, implicit methods are often developed to exclusively model the fully incompressible or 1D case since they require the construction and solution of one or more large (non)linear systems per time step, for which direct matrix inversion procedures become unacceptably slow in two or more dimensions.Aims. In this work, we present a globally implicit 3D axisymmetric Eulerian solver for the compressible Navier–Stokes equations including the energy equation using conservative formulation and a fully simultaneous approach. We use the second-order-in-time backward differentiation formula for temporal discretization as well as the κ scheme for spatial discretization. We implement different limiter functions to prohibit the occurrence of spurious oscillations in the vicinity of discontinuities. Our method resembles the well-known monotone upwind scheme for conservation laws (MUSCL). We briefly present efficient solution methods for the arising sparse and nonlinear system of equations.Methods. To deal with the nonlinearity of the Navier–Stokes equations we used a Newton iteration procedure in which the required Jacobian matrix-vector product was reconstructed with a first-order finite difference approximation to machine precision in a matrix-free way. The resulting linear system was solved either completely matrix-free with a combination of a sufficient Krylov solver and an approximate Jacobian preconditioner or semi-matrix-free with the incomplete lower upper factorization technique as a preconditioner. The latter was dependent on a standalone approximation of the Jacobian matrix, which was optionally calculated and needed solely for the purpose of preconditioning.Results. We show our method to be capable of damping sound waves and resolving shocks even at Courant numbers larger than one. Furthermore, we prove the method’s ability to solve boundary value problems like the cylindrical Taylor-Couette flow (TC), including viscosity, and to model transition flows. To show the latter, we recover predicted growth rates for the vertical shear instability, while choosing a time step orders of magnitude larger than the explicit one. Finally, we verify that our method is second order in space by simulating a simplistic, stationary solar wind.

中文翻译:


MATRICS:隐式无矩阵欧拉流体动力学求解器



语境。存在大量不同的天体物理流体动力学求解器,其中大多数基于显式公式,因此稳定性仅限于由表示局部声速的库朗数决定的小时间步长。由于这一限制,低马赫数流的建模需要较小的时间步长,从而引入显着的数值扩散,并且需要大量的计算资源。另一方面,隐式方法通常被开发来专门模拟完全不可压缩或一维情况,因为它们需要每个时间步构建和求解一个或多个大型(非线性)线性系统,为此直接矩阵求逆过程变得慢得令人无法接受。二维或更多维度。目标。在这项工作中,我们提出了一种用于可压缩纳维-斯托克斯方程的全局隐式 3D 轴对称欧拉求解器,包括使用保守公式和完全联立方法的能量方程。我们使用时间二阶后向微分公式进行时间离散化,并使用 κ 方案进行空间离散化。我们实现了不同的限制器功能,以防止在不连续点附近出现寄生振荡。我们的方法类似于著名的守恒定律单调迎风方案 (MUSCL)。我们简要介绍了稀疏和非线性方程组的有效求解方法。方法。为了处理纳维-斯托克斯方程的非线性,我们使用了牛顿迭代过程,其中所需的雅可比矩阵向量乘积通过一阶有限差分逼近以无矩阵的方式重建机器精度。 所得到的线性系统要么通过充分的 Krylov 求解器和近似雅可比预处理器的组合来完全无矩阵地求解,要么以不完全下上因数分解技术作为预处理器来半无矩阵地求解。后者取决于雅可比矩阵的独立近似,该近似可以选择性地计算并且仅用于预处理的目的。结果。我们展示了我们的方法即使在库朗数大于 1 的情况下也能够阻尼声波并解决冲击。此外,我们证明了该方法能够解决诸如圆柱泰勒-库埃特流 (TC) 之类的边值问题(包括粘度)以及对过渡流进行建模的能力。为了展示后者,我们恢复了垂直剪切不稳定性的预测增长率,同时选择比显式时间步长大几个数量级的时间步长。最后,我们通过模拟简单的静止太阳风来验证我们的方法在空间中是二阶的。
更新日期:2024-06-04