当前位置:
X-MOL 学术
›
Acc. Mater. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Structural Engineering of Hierarchical Zeolite-Based Catalysts
Accounts of Materials Research ( IF 14.0 ) Pub Date : 2024-06-04 , DOI: 10.1021/accountsmr.4c00076 Yingzhen Wei 1 , Jingyi Feng 1, 2 , Buyuan Guan 1, 2 , Jihong Yu 1, 2
Accounts of Materials Research ( IF 14.0 ) Pub Date : 2024-06-04 , DOI: 10.1021/accountsmr.4c00076 Yingzhen Wei 1 , Jingyi Feng 1, 2 , Buyuan Guan 1, 2 , Jihong Yu 1, 2
Affiliation
Zeolites are important inorganic crystalline materials with unique microporous structures, intrinsic acidic sites, and high hydrothermal stabilities, which have been widely used in the catalytic field such as methanol conversion, catalytic cracking, and NOx removal. Although the regular channel structures afford zeolite catalysts excellent shape selectivity, the diffusion hindrance caused by the narrow pores (typically less than 2 nm) significantly limits their catalytic activities and lifetimes. Introducing secondary mesopores (2–50 nm) and/or macropores (>50 nm) into the micropore system of zeolites can significantly reduce diffusion limitations and enhance the exposure of more active sites. On the other hand, the delicate integration of microporous zeolites with other functional porous materials into hierarchical heterostructures could offer enhanced or even new catalytic properties that cannot be achieved with single hierarchical zeolite catalysts. For example, tailored meso-/macroporous materials can be combined with zeolites to create composite heterostructures with controllable hierarchical architectures and spatial distributions of functional components from the nano-/microscale to the macroscale in purposeful ways, thus extending their applicability to more intricate and broad heterogeneous catalytic systems. Therefore, the rational design and synthesis of hierarchical zeolite-based materials, spanning from multilevel nanostructures to monoliths, with fascinating catalytic properties hold great significance in the development of efficient energy and environmental catalytic processes.
中文翻译:
多级孔沸石催化剂的结构工程
沸石是重要的无机晶体材料,具有独特的微孔结构、固有的酸性位点和较高的水热稳定性,已广泛应用于甲醇转化、催化裂化、NO x 脱除等催化领域。尽管规则的通道结构为沸石催化剂提供了优异的形状选择性,但窄孔(通常小于2 nm)引起的扩散阻碍显着限制了其催化活性和寿命。将次生中孔(2-50 nm)和/或大孔(>50 nm)引入沸石微孔系统中可以显着减少扩散限制并增强更多活性位点的暴露。另一方面,将微孔沸石与其他功能性多孔材料巧妙地整合成分级异质结构可以提供增强的甚至新的催化性能,这是单一分级沸石催化剂无法实现的。例如,定制的介孔/大孔材料可以与沸石结合,以有目的的方式创建具有可控层次结构和功能成分空间分布的复合异质结构,从纳米/微米尺度到宏观尺度,从而将其适用性扩展到更复杂和更广泛的领域。非均相催化系统。因此,合理设计和合成具有令人着迷的催化性能的多级沸石基材料,从多级纳米结构到整体结构,对于开发高效的能源和环境催化过程具有重要意义。
更新日期:2024-06-04
中文翻译:
多级孔沸石催化剂的结构工程
沸石是重要的无机晶体材料,具有独特的微孔结构、固有的酸性位点和较高的水热稳定性,已广泛应用于甲醇转化、催化裂化、NO x 脱除等催化领域。尽管规则的通道结构为沸石催化剂提供了优异的形状选择性,但窄孔(通常小于2 nm)引起的扩散阻碍显着限制了其催化活性和寿命。将次生中孔(2-50 nm)和/或大孔(>50 nm)引入沸石微孔系统中可以显着减少扩散限制并增强更多活性位点的暴露。另一方面,将微孔沸石与其他功能性多孔材料巧妙地整合成分级异质结构可以提供增强的甚至新的催化性能,这是单一分级沸石催化剂无法实现的。例如,定制的介孔/大孔材料可以与沸石结合,以有目的的方式创建具有可控层次结构和功能成分空间分布的复合异质结构,从纳米/微米尺度到宏观尺度,从而将其适用性扩展到更复杂和更广泛的领域。非均相催化系统。因此,合理设计和合成具有令人着迷的催化性能的多级沸石基材料,从多级纳米结构到整体结构,对于开发高效的能源和环境催化过程具有重要意义。