当前位置:
X-MOL 学术
›
Geochim. Cosmochim. Acta
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Characterizing sulfur redox state and geochemical implications in deep-time using mineral chemistry network analysis
Geochimica et Cosmochimica Acta ( IF 4.5 ) Pub Date : 2024-05-25 , DOI: 10.1016/j.gca.2024.05.024 Eli K. Moore , Joseph E. Diedolf , Shaunna M. Morrison , Daniel R. Hummer
Geochimica et Cosmochimica Acta ( IF 4.5 ) Pub Date : 2024-05-25 , DOI: 10.1016/j.gca.2024.05.024 Eli K. Moore , Joseph E. Diedolf , Shaunna M. Morrison , Daniel R. Hummer
Sulfur (S) is a central element in global biogeochemical cycling and Earth’s redox evolution. Minerals that contain S are an important record of local environmental conditions at the time of their formation based on chemical speciation and redox. However, the oxidation state of S for hundreds of different S-containing minerals and thousands of S-containing mineral localities is unknown, largely sulfides and sulfosalts, and the redox state alone does not fully capture mineral chemistry diversity, thus limiting understanding of S redox evolution. Here, we use mineral chemistry network analysis and the weighted Mineral Element Electronegativity Coefficient of Variation (wMEE) metric to investigate the element interactions and localities of S-containing minerals from the Mineral Evolution Database (MED) to infer the redox state of S in minerals where the redox state is unknown (S). Louvain community detection of the S mineral chemistry redox network reveals that there are three main network communities that are separated by redox state. The S community includes minerals that contain the S redox state and a small number of S and S minerals, the S community includes S-containing minerals, and the S community includes minerals in which the redox state of S is unknown. The wMEE values of the S community closely overlap with the wMEE values of the S community, and do not overlap with the wMEE values of the S community, indicating the S community minerals contain predominately reduced S. Assuming that S community minerals contain reduced S, as supported by their network chemical associations and wMEE values, then reduced S-containing minerals make up approximately 81 % of S-containing mineral localities in the S mineral chemistry network, even though the majority of all mineral localities (S-containing and non-S-containing) are oxygen (O)-containing minerals. Additionally, reduced S-containing minerals make up the majority (∼75 %) of all non-O containing mineral localities in the MED, representing the importance of reduced S as an electron source and substrate in the evolution of microbial metabolic networks. The range wMEE values of S community minerals expands through time due primarily to formation of chemically diverse sulfate minerals, coinciding with crustal oxidation from the late Proterozoic to Phanerozoic and the expansion of the marine sulfate reservoir. The intersection of shared constituent elements among reduced and oxidized S in the mineral chemistry network represents redox convergence of weathered S in the geosphere that was crucial in the formation of natural resource deposits and the evolution of biogeochemical cycles.
中文翻译:
使用矿物化学网络分析深度表征硫氧化还原态和地球化学意义
硫 (S) 是全球生物地球化学循环和地球氧化还原演化的核心元素。含硫矿物是其形成时基于化学形态和氧化还原的当地环境条件的重要记录。然而,数百种不同的含硫矿物和数千种含硫矿物产地的硫氧化态是未知的,主要是硫化物和磺基盐,并且氧化还原态本身并不能完全捕获矿物化学多样性,从而限制了对硫氧化还原的理解进化。在这里,我们使用矿物化学网络分析和加权矿物元素电负性变异系数 (wMEE) 指标来研究矿物演化数据库 (MED) 中含硫矿物的元素相互作用和位置,以推断矿物中硫的氧化还原态其中氧化还原态未知 (S)。 S矿物化学氧化还原网络的Louvain群落检测表明存在三个由氧化还原态分隔的主要网络群落。 S群落包括含有S氧化还原态的矿物和少量S和S矿物,S群落包括含S矿物,S群落包括S的氧化还原态未知的矿物。 S群落的wMEE值与S群落的wMEE值密切重叠,而不与S群落的wMEE值重叠,表明S群落矿物主要含有还原S。 假设 S 群落矿物含有还原硫(由其网络化学关联和 wMEE 值支持),则还原含硫矿物约占 S 矿物化学网络中含硫矿物位置的 81%,尽管大多数矿物产地(含硫和不含硫)是含氧 (O) 矿物。此外,还原含硫矿物占 MED 中所有不含 O 矿物分布的大多数(~75%),这表明还原硫作为电子源和底物在微生物代谢网络进化中的重要性。 S群落矿物的wMEE值范围随着时间的推移而扩大,这主要是由于化学多样化的硫酸盐矿物的形成,与晚元古代到显生宙的地壳氧化以及海相硫酸盐储层的扩张相一致。矿物化学网络中还原硫和氧化硫之间共享组成元素的交集代表了地圈中风化硫的氧化还原收敛,这对于自然资源矿床的形成和生物地球化学循环的演化至关重要。
更新日期:2024-05-25
中文翻译:
使用矿物化学网络分析深度表征硫氧化还原态和地球化学意义
硫 (S) 是全球生物地球化学循环和地球氧化还原演化的核心元素。含硫矿物是其形成时基于化学形态和氧化还原的当地环境条件的重要记录。然而,数百种不同的含硫矿物和数千种含硫矿物产地的硫氧化态是未知的,主要是硫化物和磺基盐,并且氧化还原态本身并不能完全捕获矿物化学多样性,从而限制了对硫氧化还原的理解进化。在这里,我们使用矿物化学网络分析和加权矿物元素电负性变异系数 (wMEE) 指标来研究矿物演化数据库 (MED) 中含硫矿物的元素相互作用和位置,以推断矿物中硫的氧化还原态其中氧化还原态未知 (S)。 S矿物化学氧化还原网络的Louvain群落检测表明存在三个由氧化还原态分隔的主要网络群落。 S群落包括含有S氧化还原态的矿物和少量S和S矿物,S群落包括含S矿物,S群落包括S的氧化还原态未知的矿物。 S群落的wMEE值与S群落的wMEE值密切重叠,而不与S群落的wMEE值重叠,表明S群落矿物主要含有还原S。 假设 S 群落矿物含有还原硫(由其网络化学关联和 wMEE 值支持),则还原含硫矿物约占 S 矿物化学网络中含硫矿物位置的 81%,尽管大多数矿物产地(含硫和不含硫)是含氧 (O) 矿物。此外,还原含硫矿物占 MED 中所有不含 O 矿物分布的大多数(~75%),这表明还原硫作为电子源和底物在微生物代谢网络进化中的重要性。 S群落矿物的wMEE值范围随着时间的推移而扩大,这主要是由于化学多样化的硫酸盐矿物的形成,与晚元古代到显生宙的地壳氧化以及海相硫酸盐储层的扩张相一致。矿物化学网络中还原硫和氧化硫之间共享组成元素的交集代表了地圈中风化硫的氧化还原收敛,这对于自然资源矿床的形成和生物地球化学循环的演化至关重要。