当前位置: X-MOL 学术ISME J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Metabolite cross-feeding enables concomitant catabolism of chlorinated methanes and chlorinated ethenes in synthetic microbial assemblies
The ISME Journal ( IF 10.8 ) Pub Date : 2024-05-31 , DOI: 10.1093/ismejo/wrae090
Gao Chen 1 , Yi Yang 2 , Jun Yan 2 , Frank E Löffler 1, 3, 4
Affiliation  

Isolate studies have been a cornerstone for unravelling metabolic pathways and phenotypical (functional) features. Biogeochemical processes in natural and engineered ecosystems are generally performed by more than a single microbe and often rely on mutualistic interactions. We demonstrate the rational bottom-up design of synthetic, interdependent co-cultures to achieve concomitant utilization of chlorinated methanes as electron donors and organohalogens as electron acceptors. Specialized anaerobes conserve energy from the catabolic conversion of dichloromethane (DCM) or chloromethane (CM) to formate, H2, and acetate, compounds that the organohalide-respiring bacterium Dehalogenimonas etheniformans strain GP requires to utilize cis-1,2-dichloroethenene (cDCE) and vinyl chloride (VC) as electron acceptors. Organism-specific qPCR enumeration matched growth of individual dechlorinators to the respective functional (i.e., dechlorination) traits. The metabolite cross-feeding in the synthetic (co-)cultures enables concomitant utilization of chlorinated methanes (i.e., DCM, CM) and chlorinated ethenes (i.e., cDCE, VC) without the addition of external electron donor (i.e., formate, H2). The findings illustrate that naturally occurring chlorinated C1 compounds can sustain anaerobic food webs, an observation with implications for the development of interdependent, mutualistic communities, sustenance of microbial life in oligotrophic and energy-deprived environments, and for the fate of DCM/CM and chlorinated ethenes in pristine environments and commingled contaminant plumes.

中文翻译:


代谢物交叉供给使得合成微生物组合中氯化甲烷和氯化乙烯能够同时分解代谢



分离株研究已成为阐明代谢途径和表型(功能)特征的基石。自然和工程生态系统中的生物地球化学过程通常由多个微生物执行,并且通常依赖于互利相互作用。我们展示了合成的、相互依赖的共培养物的合理自下而上设计,以实现氯化甲烷作为电子供体和有机卤素作为电子受体的同时利用。专门的厌氧菌通过二氯甲烷 (DCM) 或氯甲烷 (CM) 分解代谢转化为甲酸盐、H2 和乙酸盐来保存能量,有机卤化物呼吸细菌 Dehalogenimonas etheniformans 菌株 GP 需要利用顺式 1,2-二氯乙烯 (cDCE)和氯乙烯(VC)作为电子受体。生物体特异性 qPCR 计数将个体脱氯剂的生长与各自的功能(即脱氯)特征相匹配。合成(共)培养物中的代谢物交叉补料可以同时利用氯化甲烷(即 DCM、CM)和氯化乙烯(即 cDCE、VC),而无需添加外部电子供体(即甲酸盐、H2) 。研究结果表明,天然存在的氯化 C1 化合物可以维持厌氧食物网,这一观察结果对相互依存、互利共生群落的发展、寡营养和能量匮乏环境中微生物生命的维持以及 DCM/CM 和氯化物的命运具有重要意义。原始环境中的乙烯和混合污染物羽流。
更新日期:2024-05-31
down
wechat
bug