当前位置:
X-MOL 学术
›
Schizophr. Bull.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Functional Connectivity-Based Searchlight Multivariate Pattern Analysis for Discriminating Schizophrenia Patients and Predicting Clinical Variables
Schizophrenia Bulletin ( IF 5.3 ) Pub Date : 2024-05-31 , DOI: 10.1093/schbul/sbae084 Yayuan Chen 1, 2 , Sijia Wang 1 , Xi Zhang 2 , Qingqing Yang 3 , Minghui Hua 4 , Yifan Li 2 , Wen Qin 1 , Feng Liu 1 , Meng Liang 2
Schizophrenia Bulletin ( IF 5.3 ) Pub Date : 2024-05-31 , DOI: 10.1093/schbul/sbae084 Yayuan Chen 1, 2 , Sijia Wang 1 , Xi Zhang 2 , Qingqing Yang 3 , Minghui Hua 4 , Yifan Li 2 , Wen Qin 1 , Feng Liu 1 , Meng Liang 2
Affiliation
Background Schizophrenia, a multifaceted psychiatric disorder characterized by functional dysconnectivity, poses significant challenges in clinical practice. This study explores the potential of functional connectivity (FC)-based searchlight multivariate pattern analysis (CBS-MVPA) to discriminate between schizophrenia patients and healthy controls while also predicting clinical variables. Study Design We enrolled 112 schizophrenia patients and 119 demographically matched healthy controls. Resting-state functional magnetic resonance imaging data were collected, and whole-brain FC subnetworks were constructed. Additionally, clinical assessments and cognitive evaluations yielded a dataset comprising 36 clinical variables. Finally, CBS-MVPA was utilized to identify subnetworks capable of effectively distinguishing between the patient and control groups and predicting clinical scores. Study Results The CBS-MVPA approach identified 63 brain subnetworks exhibiting significantly high classification accuracies, ranging from 62.2% to 75.6%, in distinguishing individuals with schizophrenia from healthy controls. Among them, 5 specific subnetworks centered on the dorsolateral superior frontal gyrus, orbital part of inferior frontal gyrus, superior occipital gyrus, hippocampus, and parahippocampal gyrus showed predictive capabilities for clinical variables within the schizophrenia cohort. Conclusion This study highlights the potential of CBS-MVPA as a valuable tool for localizing the information related to schizophrenia in terms of brain network abnormalities and capturing the relationship between these abnormalities and clinical variables, and thus, deepens our understanding of the neurological mechanisms of schizophrenia.
中文翻译:
基于功能连接的探照灯多变量模式分析,用于区分精神分裂症患者并预测临床变量
背景 精神分裂症是一种以功能性连接不良为特征的多方面精神疾病,在临床实践中构成了重大挑战。本研究探讨了基于功能连接 (FC) 的探照灯多变量模式分析 (CBS-MVPA) 在区分精神分裂症患者和健康对照者的同时预测临床变量的潜力。研究设计 我们招募了 112 名精神分裂症患者和 119 名人口统计学匹配的健康对照者。收集静息态功能磁共振成像数据,构建全脑 FC 子网络。此外,临床评估和认知评估产生了一个包含 36 个临床变量的数据集。最后,CBS-MVPA 用于识别能够有效区分患者组和对照组并预测临床评分的子网络。研究结果 CBS-MVPA 方法确定了 63 个大脑子网络,在区分精神分裂症个体和健康对照方面表现出显着的高分类准确性,范围从 62.2% 到 75.6% 不等。其中,以背外侧额上回、额下回眼眶部分、枕上回、海马和海马旁回为中心的 5 个特异性亚网络在精神分裂症队列中显示出对临床变量的预测能力。结论 本研究强调了 CBS-MVPA 作为一种有价值的工具的潜力,可用于定位与精神分裂症相关的脑网络异常相关信息并捕捉这些异常与临床变量之间的关系,从而加深我们对精神分裂症神经机制的理解。
更新日期:2024-05-31
中文翻译:
基于功能连接的探照灯多变量模式分析,用于区分精神分裂症患者并预测临床变量
背景 精神分裂症是一种以功能性连接不良为特征的多方面精神疾病,在临床实践中构成了重大挑战。本研究探讨了基于功能连接 (FC) 的探照灯多变量模式分析 (CBS-MVPA) 在区分精神分裂症患者和健康对照者的同时预测临床变量的潜力。研究设计 我们招募了 112 名精神分裂症患者和 119 名人口统计学匹配的健康对照者。收集静息态功能磁共振成像数据,构建全脑 FC 子网络。此外,临床评估和认知评估产生了一个包含 36 个临床变量的数据集。最后,CBS-MVPA 用于识别能够有效区分患者组和对照组并预测临床评分的子网络。研究结果 CBS-MVPA 方法确定了 63 个大脑子网络,在区分精神分裂症个体和健康对照方面表现出显着的高分类准确性,范围从 62.2% 到 75.6% 不等。其中,以背外侧额上回、额下回眼眶部分、枕上回、海马和海马旁回为中心的 5 个特异性亚网络在精神分裂症队列中显示出对临床变量的预测能力。结论 本研究强调了 CBS-MVPA 作为一种有价值的工具的潜力,可用于定位与精神分裂症相关的脑网络异常相关信息并捕捉这些异常与临床变量之间的关系,从而加深我们对精神分裂症神经机制的理解。