Nature Reviews Materials ( IF 79.8 ) Pub Date : 2024-05-31 , DOI: 10.1038/s41578-024-00682-1 Kevin P. Nuckolls , Ali Yazdani
Contemporary quantum materials research is guided by themes of topology and electronic correlations. A confluence of these two themes is engineered in moiré materials, an emerging class of highly tunable, strongly correlated 2D materials designed by the rotational or lattice misalignment of atomically thin crystals. In moiré materials, dominant Coulomb interactions among electrons give rise to collective electronic phases, often with robust topological properties. Identifying the mechanisms responsible for these exotic phases is fundamental to our understanding of strongly interacting quantum systems and to our ability to engineer new material properties for potential future technological applications. In this Review, we highlight the contributions of local spectroscopic, thermodynamic and electromagnetic probes to the budding field of moiré materials research. These techniques have not only identified many of the underlying mechanisms of the correlated insulators, generalized Wigner crystals, unconventional superconductors, moiré ferroelectrics and topological orbital ferromagnets found in moiré materials, but have also uncovered fragile quantum phases that have evaded spatially averaged global probes. Furthermore, we highlight recently developed local probe techniques, including local charge sensing and quantum interference probes, that have uncovered new physical observables in moiré materials.
中文翻译:
摩尔纹材料的微观视角
当代量子材料研究以拓扑和电子相关性为主题。这两个主题的融合在莫尔材料中得到了体现,莫尔材料是一类新兴的高度可调、强相关的二维材料,由原子薄晶体的旋转或晶格错位设计。在莫尔材料中,电子之间的主要库仑相互作用产生集体电子相,通常具有强大的拓扑特性。识别这些奇异相的机制对于我们理解强相互作用的量子系统以及我们为未来潜在的技术应用设计新材料特性的能力至关重要。在这篇综述中,我们强调了局部光谱、热力学和电磁探针对莫尔材料研究新兴领域的贡献。这些技术不仅确定了莫尔材料中发现的相关绝缘体、广义维格纳晶体、非常规超导体、莫尔铁电体和拓扑轨道铁磁体的许多基本机制,而且还发现了逃避空间平均全局探测的脆弱量子相。此外,我们还重点介绍了最近开发的局部探针技术,包括局部电荷传感和量子干涉探针,这些技术在莫尔材料中发现了新的物理可观测值。