当前位置: X-MOL 学术Ind. Eng. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Matrix Doped C3N4 with Hierarchical Microstructures and High Vis–NIR Light Photoactivity
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2024-05-29 , DOI: 10.1021/acs.iecr.4c01086
Hanhang Zhang 1 , Minjie Huang 1 , Zhiqiang Jiang 1 , Jian Yang 1 , Ya Li 1 , Lihui Yao 1 , Yujing You 1, 2
Affiliation  

The efficient use of solar energy for photocatalytic CO2 reduction is still challenging. GCN (graphitic carbon nitride) has bulky structures and weak absorption in the Vis–NIR range. Herein, we report a series of homogeneously P-doped carbon nitrides (PCN) with tunable microstructures and high Vis–NIR light activities. PCN samples were prepared via a solvothermal method, followed by a calcination step. Unique morphologies, including pinecones, hourglasses, and furry balls, were obtained in a controlled way. The structural development of PCN in the synthesis process was investigated (by SEM and XRD). PCN samples have larger specific surface areas (by BET analysis) and much stronger Vis–NIR adsorption (400–1500 nm, by UV–vis absorption spectra and near-infrared thermal imaging). The enhanced photoactivities under solar light originated from an elevated valence band (by Mott–Schottky analysis and XPS-VB). Strikingly, the band gap was reduced from 2.71 eV (GCN) to 1.43 eV (PCN). Theoretical calculations (DFT) confirmed that P doping led to the spatial separation of carbon nitride HOMO and LUMO orbitals, which essentially inhibited the recombination of photogenerated carriers and promoted the separation of photogenerated carriers. Photocatalytic CO2 reduction results indicated that matrix P-doping and the microstructural changes synergistically enhanced the CO2 to CO reduction rate (9.2 times of GCN). These results highlight the general applicability of the present method to prepare efficient solar-light-active carbon nitride-based photocatalysts.

中文翻译:


具有分层微结构和高可见光-近红外光光活性的基质掺杂 C3N4



有效利用太阳能进行光催化 CO 2 还原仍然具有挑战性。 GCN(石墨氮化碳)结构庞大,在可见光-近红外范围内吸收较弱。在此,我们报道了一系列具有可调微观结构和高可见-近红外光活性的均匀磷掺杂碳氮化物(PCN)。 PCN 样品通过溶剂热法制备,然后进行煅烧步骤。独特的形态,包括松果、沙漏和毛茸茸的球,都是通过受控的方式获得的。研究了合成过程中 PCN 的结构发展(通过 SEM 和 XRD)。 PCN 样品具有更大的比表面积(通过 BET 分析)和更强的可见-近红外吸附(400-1500 nm,通过紫外-可见吸收光谱和近红外热成像)。太阳光下增强的光活性源自升高的价带(通过莫特-肖特基分析和 XPS-VB)。引人注目的是,带隙从 2.71 eV (GCN) 减小到 1.43 eV (PCN)。理论计算(DFT)证实,P掺杂导致氮化碳HOMO和LUMO轨道的空间分离,从本质上抑制了光生载流子的复合,促进了光生载流子的分离。光催化CO 2 还原结果表明,基体P掺杂和微观结构变化协同提高了CO 2 到CO的还原率(GCN的9.2倍)。这些结果突出了本方法在制备高效的太阳光活性氮化碳基光催化剂方面的普遍适用性。
更新日期:2024-05-29
down
wechat
bug