当前位置:
X-MOL 学术
›
Prog. Polym. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Recent advances in coacervation and underlying noncovalent molecular interaction mechanisms
Progress in Polymer Science ( IF 26.0 ) Pub Date : 2024-05-08 , DOI: 10.1016/j.progpolymsci.2024.101827 Qiongyao Peng , Tao Wang , Diling Yang , Xuwen Peng , Hao Zhang , Hongbo Zeng
Progress in Polymer Science ( IF 26.0 ) Pub Date : 2024-05-08 , DOI: 10.1016/j.progpolymsci.2024.101827 Qiongyao Peng , Tao Wang , Diling Yang , Xuwen Peng , Hao Zhang , Hongbo Zeng
Coacervation is a liquid-liquid phase separation phenomenon. It involves the formation of a dense coacervate phase, rich in concentrated materials, and a co-existing immiscible dilute supernatant. This phenomenon can occur either from a homogeneous aqueous solution (simple coacervation) or when two different macromolecular aqueous solutions (proteins, polymers, and colloids) are brought into contact (complex coacervation). Coacervation has historical significance as it may have played a role in the origin of life, concentrating nutritious materials through liquid-liquid phase separation. It also reveals the underlying mechanisms of many biological phenomena such as intracellular biomolecular condensates, extracellular matrices, squid beak's gradient properties, sessile organism's wet adhesion, Alzheimer's diseases, and more. Coacervation provides insights and inspires promising solutions in areas like artificial cells/tissues, gradient materials, gene/drug delivery, underwater adhesives, and beyond. The driving forces of coacervation are noncovalent molecular interactions, often referred to as ‘chemistry beyond the molecule’, including hydrophobic interaction, electrostatic interaction, hydrogen-bonding interaction, cation-π interaction, π-π interaction, multivalency, etc. In this work, we have systematically reviewed the underlying noncovalent molecular interactions of simple coacervation and complex coacervation, respectively. We summarize commonly used materials and their corresponding molecular structures, discussing their applications. Some remaining challenge issues and perspectives for future studies are also presented. Understanding the underlying noncovalent molecular interactions of coacervation, alongside insights into molecular compositions and structures, can better guide the design of novel materials, elucidate various biological phenomena, and contribute to the development and optimization of relevant engineering technologies.
中文翻译:
凝聚和潜在非共价分子相互作用机制的最新进展
凝聚是一种液-液相分离现象。它涉及形成富含浓缩物质的致密凝聚相和共存的不混溶的稀释上清液。这种现象可以在均质水溶液(简单凝聚)中发生,也可以在两种不同的大分子水溶液(蛋白质、聚合物和胶体)接触时发生(复杂凝聚)。凝聚具有历史意义,因为它可能在生命起源中发挥了作用,通过液-液相分离浓缩营养物质。它还揭示了许多生物现象的潜在机制,例如细胞内生物分子凝聚物、细胞外基质、鱿鱼喙的梯度特性、固着生物的湿粘附、阿尔茨海默病等。凝聚在人造细胞/组织、梯度材料、基因/药物输送、水下粘合剂等领域提供了见解并激发了有前景的解决方案。凝聚的驱动力是非共价分子相互作用,通常被称为“分子外的化学”,包括疏水相互作用、静电相互作用、氢键相互作用、阳离子-π相互作用、π-π相互作用、多价等。 ,我们分别系统地回顾了简单凝聚和复杂凝聚的潜在非共价分子相互作用。我们总结了常用的材料及其相应的分子结构,讨论了它们的应用。还提出了一些剩余的挑战问题和未来研究的观点。 了解凝聚的潜在非共价分子相互作用,以及对分子组成和结构的深入了解,可以更好地指导新型材料的设计,阐明各种生物现象,并有助于相关工程技术的开发和优化。
更新日期:2024-05-08
中文翻译:
凝聚和潜在非共价分子相互作用机制的最新进展
凝聚是一种液-液相分离现象。它涉及形成富含浓缩物质的致密凝聚相和共存的不混溶的稀释上清液。这种现象可以在均质水溶液(简单凝聚)中发生,也可以在两种不同的大分子水溶液(蛋白质、聚合物和胶体)接触时发生(复杂凝聚)。凝聚具有历史意义,因为它可能在生命起源中发挥了作用,通过液-液相分离浓缩营养物质。它还揭示了许多生物现象的潜在机制,例如细胞内生物分子凝聚物、细胞外基质、鱿鱼喙的梯度特性、固着生物的湿粘附、阿尔茨海默病等。凝聚在人造细胞/组织、梯度材料、基因/药物输送、水下粘合剂等领域提供了见解并激发了有前景的解决方案。凝聚的驱动力是非共价分子相互作用,通常被称为“分子外的化学”,包括疏水相互作用、静电相互作用、氢键相互作用、阳离子-π相互作用、π-π相互作用、多价等。 ,我们分别系统地回顾了简单凝聚和复杂凝聚的潜在非共价分子相互作用。我们总结了常用的材料及其相应的分子结构,讨论了它们的应用。还提出了一些剩余的挑战问题和未来研究的观点。 了解凝聚的潜在非共价分子相互作用,以及对分子组成和结构的深入了解,可以更好地指导新型材料的设计,阐明各种生物现象,并有助于相关工程技术的开发和优化。