当前位置:
X-MOL 学术
›
Appl. Math. Comput.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Explicit numerical approximations for SDDEs in finite and infinite horizons using the adaptive EM method: Strong convergence and almost sure exponential stability
Applied Mathematics and Computation ( IF 3.5 ) Pub Date : 2024-05-27 , DOI: 10.1016/j.amc.2024.128853 Ulises Botija-Munoz , Chenggui Yuan
Applied Mathematics and Computation ( IF 3.5 ) Pub Date : 2024-05-27 , DOI: 10.1016/j.amc.2024.128853 Ulises Botija-Munoz , Chenggui Yuan
In this paper we investigate explicit numerical approximations for stochastic differential delay equations (SDDEs) under a local Lipschitz condition by employing the adaptive Euler-Maruyama (EM) method. Working in both finite and infinite horizons, we achieve strong convergence results of the adaptive EM solution. We also obtain the order of convergence in finite horizon. In addition, we show almost sure exponential stability of the adaptive approximate solution for both SDEs and SDDEs.
中文翻译:
使用自适应 EM 方法对有限和无限视野中的 SDDE 进行显式数值逼近:强收敛性和几乎确定的指数稳定性
在本文中,我们采用自适应 Euler-Maruyama (EM) 方法研究局部 Lipschitz 条件下随机微分时滞方程 (SDDE) 的显式数值近似。在有限和无限视野中工作,我们实现了自适应 EM 解决方案的强大收敛结果。我们还获得了有限视野内的收敛阶。此外,我们还展示了 SDE 和 SDDE 的自适应近似解的几乎确定的指数稳定性。
更新日期:2024-05-27
中文翻译:
使用自适应 EM 方法对有限和无限视野中的 SDDE 进行显式数值逼近:强收敛性和几乎确定的指数稳定性
在本文中,我们采用自适应 Euler-Maruyama (EM) 方法研究局部 Lipschitz 条件下随机微分时滞方程 (SDDE) 的显式数值近似。在有限和无限视野中工作,我们实现了自适应 EM 解决方案的强大收敛结果。我们还获得了有限视野内的收敛阶。此外,我们还展示了 SDE 和 SDDE 的自适应近似解的几乎确定的指数稳定性。