Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Impact of rift history on the structural style of intracontinental rift-inversion orogens
Geology ( IF 4.8 ) Pub Date : 2024-06-01 , DOI: 10.1130/g51489.1 Dylan A. Vasey 1, 2 , John B. Naliboff 3 , Eric Cowgill 1 , Sascha Brune 4, 5 , Anne Glerum 4 , Frank Zwaan 4, 6
Geology ( IF 4.8 ) Pub Date : 2024-06-01 , DOI: 10.1130/g51489.1 Dylan A. Vasey 1, 2 , John B. Naliboff 3 , Eric Cowgill 1 , Sascha Brune 4, 5 , Anne Glerum 4 , Frank Zwaan 4, 6
Affiliation
Although many collisional orogens form after subduction of oceanic lithosphere between two continents, some orogens result from strain localization within a continent via inversion of structures inherited from continental rifting. Intracontinental rift-inversion orogens exhibit a range of structural styles, but the underlying causes of such variability have not been extensively explored. We use numerical models of intracontinental rift inversion to investigate the impact of parameters including rift structure, rift duration, post-rift cooling, and convergence velocity on orogen structure. Our models reproduce the natural variability of rift-inversion orogens and can be categorized using three endmember styles: asymmetric underthrusting (AU), distributed thickening (DT), and localized polarity flip (PF). Inversion of narrow rifts tends to produce orogens with more localized deformation (styles AU and PF) than those resulting from wide rifts. However, multiple combinations of the parameters we investigated can produce the same structural style. Thus, our models indicate no unique relationship between orogenic structure and the conditions prior to and during inversion. Because the style of rift-inversion orogenesis is highly contingent upon the rift history prior to inversion, knowing the geologic history that preceded rift inversion is essential for translating orogenic structure into the processes that produced that structure.Plate-boundary collisional orogens form along boundaries between tectonic plates when two continental blocks collide following subduction of intervening oceanic lithosphere (e.g., Dewey and Bird, 1970). In contrast, intraplate orogens form within a continental plate by localization of strain along preexisting weaknesses (e.g., Vilotte et al., 1982; Ziegler et al., 1995; Raimondo et al., 2014). Some intraplate orogens reactivate weaknesses inherited from past collisions (e.g., the Tien Shan [Central Asia]; Jourdon et al., 2018), whereas others exploit weaknesses developed during continental rifting and thus are considered the result of rift inversion (Fig. 1; e.g., Cooper et al., 1989; Beauchamp et al., 1996; Marshak et al., 2000). A common presumption seems to be that the structural style of intracontinental rift-inversion orogens should be distinct from that of plate-boundary orogens, because during rift inversion, convergence is expected to occur by reactivation of extensional structures, resulting in distributed lithospheric thickening (e.g., Buiter et al., 2009; Vincent et al., 2016, 2018). However, many rift-inversion orogens feature asymmetric underthrusting along lithosphere-scale shear zones and development of major fold-thrust systems (Fig. 1; e.g., Jammes et al., 2009), comparable to plate-boundary orogens (e.g., Willett et al., 1993; Beaumont et al., 1996).Geodynamic numerical modeling of rift-inversion orogenesis typically focuses on the High Atlas (Morocco) and the Pyrenees (Spain and France) (e.g., Buiter et al., 2009; Jammes et al., 2014; Dielforder et al., 2019; Jourdon et al., 2019; Wolf et al., 2021), though the structural styles of these orogens are distinct (Fig. 1). The High Atlas is broadly symmetric, flanked on both sides by fold-thrust belts of opposing vergence, and exhibits no underthrusting of one block of lithosphere beneath another (e.g., Beauchamp et al., 1999; Gomez et al., 2000). In contrast, the Pyrenees show asymmetric lithospheric underthrusting and fold-thrust belt development concentrated on one side of the orogen (e.g., Muñoz, 1992; Dielforder et al., 2019). The structure of these orogens varies considerably along-strike, and other rift-inversion orogens exhibit a range of symmetry and thrust-belt vergence (Fig. 1; e.g., the Greater Caucasus, Alice Springs [Australia], Araçuaí-West Congo [Brazil and Africa], Rocas Verdes [South America]; Philip et al., 1989; Fosdick et al., 2011; Raimondo et al., 2014; Fossen et al., 2020), but the controls on this variability are poorly understood.We present two-dimensional (2-D) geodynamic numerical models designed to explore connections between the initial conditions of a rift prior to inversion and the structure of the resulting rift-inversion orogen. We find that changes in rift structure, rift duration, post-rift cooling, and convergence velocity dramatically change the large-scale structure of the resulting orogen, producing models that exhibit the distributed lithospheric thickening of the High Atlas, the asymmetric lithospheric underthrusting of the Pyrenees, and additional variability reminiscent of other natural rift-inversion orogens.We modeled 2-D intracontinental rift inversion using the open-source, finite-element code ASPECT (Kronbichler et al., 2012; Heister et al., 2017; Naliboff et al., 2020; Bangerth et al., 2021; see the Supplemental Material1 for detailed methods). To systematically compare the competing effects of rift structure, rift duration, post-rift cooling, and convergence rate, we performed 16 model simulations in a 1000 × 600 km model domain (Fig. 2A; Table 1). Each model began by using different combinations of lithospheric thickness and extension velocity to develop either a narrow or wide rift structure from an initial block of continental lithosphere (Fig. 2B, Table 1; e.g., Tetreault and Buiter, 2018). We stopped extension either at lithospheric breakup or at half the model time required to reach breakup. We inverted each of these four rifts with either no post-rift cooling phase or after a cooling period of 20 m.y. to get an initial sense of the effects of a post-rift cooling phase on orogenic style. For each of these eight models, we imposed two different convergence velocities during inversion (1 cm/yr, 5 cm/yr), with duration scaled (20 m.y., 4 m.y.) so that each orogen underwent the same amount of total convergence (200 km).Several of our model rift-inversion orogens are characterized by asymmetric underthrusting of one block of lithosphere beneath another along a lithosphere-scale shear zone (style AU, Fig. 2C). This behavior is exemplified by model 1, formed from immediate inversion at 1 cm/yr of a narrow rift halfway to lithospheric breakup (Fig. 2A; Table 1). In this model, initial symmetric uplift of both sides of the rift gives way to localization of most strain along a left-dipping shear zone to the right of the former rift axis (Fig. 2C). Near the end of the model run, deformation propagates both along a synthetic shear zone to the right of the main structure and along an antithetic backthrust to the left.By contrast, a second group of models does not localize deformation along lithosphere-scale thrust shear zones but instead undergoes distributed thickening of the lithosphere due to inversion along former normal faults (style DT). Model 5 (Fig. 2C) demonstrates this deformational style and tracks the immediate inversion at 1 cm/yr of a wide rift that has extended halfway to lithospheric breakup (Fig. 2A; Table 1). Distributed deformation during rifting leaves an ~400-km-wide zone of primarily upper-crustal normal faults with no distinct rift axis. Compression during inversion leads to reactivation of these structures as reverse faults as the lower crust and mantle lithosphere buckle and fold.In a third set of models, deformation is localized asymmetrically along lithosphere-scale shear zones, but the individual shear zones are short-lived and are crosscut as new shear zones of opposite polarity take over (style PF). An endmember case of this orogenic style is model 3 (Fig. 2C), which results from immediate inversion at 1 cm/yr of a narrow rift at full lithospheric breakup (Fig. 2A; Table 1). In this case, initial symmetric asthenospheric upwelling at the rift axis gives way to localized deformation along two right-dipping, lithosphere-scale shear zones that are then subsequently crosscut by left-dipping shear zones. The resulting orogen is largely symmetric with only a hint of right-directed vergence (Fig. 2C).Half of the model results can be classified as distinctly style AU, DT, or PF rift-inversion orogens, while the other half exhibit orogenesis that is intermediate in character (Fig. 3). Intermediate behavior generally results from increasing localization of deformation as inversion proceeds, with style DT leading to style PF (model 15) or style AU (models 6, 7, 8, and 14), and style PF leading to style AU (models 2 and 10). The exception to this trend is model 4, in which initial localization along a pair of left- and right-dipping shear zones (style PF) gives way to more distributed deformation (style DT).To visualize the relationship between the model parameters explored here and the resulting structural styles, we assign each model a place on a schematic ternary diagram with vertices representing styles AU, DT, and PF (Fig. 3). We additionally place each of the natural orogens presented in Figure 1 on this diagram based on the overall vergence of major structures in the final orogen. The configuration of each individual orogen is contingent on the specific ensemble of parameters that produced it. However, there are general patterns between individual parameters and our three endmember orogenic styles.The greatest influence on orogenic style is exerted by the structure of the rift (Fig. 3). Rift-inversion orogens that start with a narrow rift tend to have more localized deformation along lithosphere-scale shear zones, resulting in pronounced asymmetric underthrusting (style AU) or flipping polarity (style PF). By contrast, inversion of a wide rift tends to result in orogens with more distributed thickening (style DT). However, this pattern does not hold across the full range of parameter space, with one orogen formed from a narrow rift (model 4) exhibiting elements of style DT and several orogens formed from wide rifts (models 6, 7, 8, 14, 15, and 16) displaying at least some element of styles AU or PF.The influence of post-rift cooling and rift duration is less systematic. Rifting to full lithospheric breakup rather than halfway to breakup promotes localized deformation (styles AU and PF), though this is highly contingent on the rift structure (Fig. 3). Full breakup in a narrow rift tends to promote style PF over style AU (e.g., models 3 and 12), whereas inversion of a wide rift after full breakup promotes style AU over style DT (e.g., models 7, 8, and 16). Post-rift cooling promotes increasing localization of deformation (styles AU and PF). For inversion of narrow rifts (e.g., models 2, 10, and 12), the post-rift cooling phase tends to result in shear zones of alternating polarity (style PF) rather than asymmetric underthrusting (style AU), whereas for inversion of wide rifts (e.g., models 6, 14, and 16), post-rift cooling tends to result in more distinctly asymmetric (style AU) behavior (Fig. 3).The convergence velocity has less of an impact on the structure of the resulting orogen, but, in general, faster convergence velocities appear to promote asymmetric underthrusting (style AU). The most striking influence is seen by comparing models 3 (1 cm/yr) and 11 (5 cm/yr), which are equivalent in setup apart from convergence velocity. Model 3 is our exemplar orogen for style PF (Fig. 2C), whereas model 11 exhibits asymmetric underthrusting representative of style AU (Fig. 3).Our study differs from prior work by exploring the range of structural variability in rift-inversion orogenesis as a general process (see the Supplemental Material for additional details). Studies focused on the Pyrenees tend to feature narrow rift structures taken close to lithospheric breakup with no post-rift cooling, resulting in orogens that resemble style AU (Jammes et al., 2014; Dielforder et al., 2019; Jourdon et al., 2019). Some modeling studies of continental collision include one or more rift-inversion orogens for comparison with models with no pre-collisional extension, using parameters similar to the Pyrenees models that also yield style AU orogens (Jammes and Huismans, 2012; Wolf et al., 2021). One study that emphasizes the High Atlas includes wide rifts extended part way to lithospheric breakup with significant post-rift cooling, with resulting orogens exhibiting style DT (Buiter et al., 2009). By exploring a wider range of first-order variations in initial rift conditions, we capture both the AU orogenic style seen in models of the Pyrenees and the DT style seen in the Atlas-inspired model within a single suite of model results, in addition to other modes of deformation (style PF and intermediate modes) that do not resemble the High Atlas or Pyrenees (Fig. 3).This initial exploration suggests that the path to developing a particular structural style is non-unique; different combinations of rift structure, rift duration, post-rift cooling, and/or convergence velocity can result in the same first-order style (Fig. 3). Thus, in natural intracontinental rift-inversion orogens, the observed structural style may provide some indication of initial conditions but cannot uniquely pinpoint a single set of conditions. For example, the asymmetric underthrusting (style AU) observed in the Pyrenees or western Greater Caucasus (Fig. 1) could potentially be produced either by slower closure of a narrow rift immediately after partial lithospheric breakup (model 1) or by faster closure of a narrow rift extended to full lithospheric breakup (model 11).Because the present-day structure of these orogens alone is insufficient to uniquely identify these parameters, using additional observations to constrain their geologic histories is critical. Our study highlights the need to collect data that can differentiate between incremental tectonic histories in natural orogens. In particular, we note the importance of low-temperature thermochronology, which can provide constraints on both the timing and magnitude of deformation across major structures within collisional orogens (e.g., McQuarrie and Ehlers, 2017), as well as sedimentary records, which track changes in deposition and erosion as rifting and collision proceed (e.g., Tye et al., 2020). Future modeling studies that connect these first-order structural styles and their rift histories with patterns in thermochronology and/or sedimentary basin evolution will be essential for unraveling the complete history of intracontinental rift-inversion orogens.Two-dimensional geodynamic numerical modeling of intracontinental rift inversion indicates that the structural style of rift-inversion orogens is highly dependent on initial conditions, including rift structure, rift duration, post-rift cooling, and convergence velocity. Model orogens resulting from variations in these parameters can be classified using three structural styles: asymmetric underthrusting (AU), distributed thickening (DT), and localized polarity flip (PF). No systematic relationship exists between structural style and individual parameters, though narrow rifts, rifts that do not achieve lithospheric breakup, and rifts that cool prior to inversion tend to promote localized deformation (AU and PF) over distributed deformation (DT). These model results reconcile the range of structural styles seen in natural rift-inversion orogens but also indicate that a single structural style can be produced from multiple rift histories.This study was supported by U.S. National Science Foundation (NSF) grant 2050623 to E. Cowgill. ASPECT is hosted by the Computational Infrastructure for Geodynamics (CIG), supported by NSF grants 0949446 and 1550901. This work primarily used Extreme Science and Engineering Discovery Environment (XSEDE) (Towns et al., 2014) allocations EES210024 (E. Cowgill) and EAR080022N (CIG) on Stampede2 (Texas Advanced Computing Center [TACC]), supported by NSF grant 1548562. Additional models were run using the Advanced Cyberinfrastructure Coordination Ecosystem: Services and Support (ACCESS) (Boerner et al., 2023) allocations EES230094 (D. Vasey) and TRA130003 (Tufts University, USA) on the Expanse cluster (San Diego Supercomputer Center at University of California San Diego), supported by NSF grants 2138259, 2138286, 2138307, 2137603, and 2138296. We thank L. Le Pourhiet and two anonymous reviewers for constructive reviews.
中文翻译:
裂谷历史对陆内裂谷反转造山带构造样式的影响
尽管许多碰撞造山带是在两块大陆之间的海洋岩石圈俯冲之后形成的,但一些造山带是通过大陆裂谷继承的结构反转而在大陆内产生应变局部化的结果。陆内裂谷反转造山带表现出一系列的结构样式,但这种变化的根本原因尚未得到广泛探索。我们利用陆内裂谷反演数值模型来研究裂谷结构、裂谷持续时间、裂谷后冷却和收敛速度等参数对造山带结构的影响。我们的模型再现了裂谷反转造山带的自然变化,并且可以使用三种端元类型进行分类:不对称逆冲(AU)、分布式增厚(DT)和局部极性翻转(PF)。与宽裂谷相比,窄裂谷的反转往往会产生具有更多局部变形(AU 和 PF 型)的造山带。然而,我们研究的参数的多种组合可以产生相同的结构样式。因此,我们的模型表明造山结构与反转之前和期间的条件之间没有独特的关系。由于裂谷反转造山作用的类型很大程度上取决于反转之前的裂谷历史,因此了解裂谷反转之前的地质历史对于将造山结构转化为产生该结构的过程至关重要。板块边界碰撞造山带沿边界形成当两个大陆块在中间的海洋岩石圈俯冲后发生碰撞时,就会形成构造板块(例如,Dewey 和 Bird,1970)。相比之下,板内造山带通过沿着预先存在的弱点进行应变定位而在大陆板块内形成(例如,Vilotte 等人,2017)。,1982;齐格勒等人,1995;雷蒙多等人,2014)。一些板内造山带重新激活了过去碰撞中继承的弱点(例如天山[中亚];Jourdon等,2018),而其他造山带则利用了大陆裂谷期间形成的弱点,因此被认为是裂谷反转的结果(图1;例如,Cooper 等人,1989;Beauchamp 等人,1996;Marshak 等人,2000)。一个常见的假设似乎是,陆内裂谷反转造山带的结构类型应与板块边界造山带不同,因为在裂谷反转期间,预计会通过伸展结构的重新激活而发生汇聚,从而导致分布式岩石圈增厚(例如,岩石圈增厚)。 ,Buiter 等人,2009;Vincent 等人,2016,2018)。然而,许多裂谷反转造山带的特征是沿着岩石圈尺度剪切带的不对称逆冲作用和主要褶皱逆冲系统的发育(图1;例如,Jammes等,2009),与板块边界造山带(例如,Willett等)相当。 al., 1993; Beaumont et al., 1996)。裂谷反转造山作用的地球动力学数值模拟通常集中在高阿特拉斯山脉(摩洛哥)和比利牛斯山脉(西班牙和法国)(例如,Buiter et al., 2009; Jammes et al., 2009) al., 2014; Dielforder et al., 2019; Jourdon et al., 2019; Wolf et al., 2021),尽管这些造山带的结构样式不同(图 1)。高阿特拉斯大体上是对称的,两侧是辐度相反的褶皱逆冲带,并且没有表现出一个岩石圈块在另一个岩石圈块之下的逆冲(例如,Beauchamp 等,1999;Gomez 等,2000)。相比之下,比利牛斯山脉表现出不对称的岩石圈逆冲和褶皱逆冲带发育,集中在造山带的一侧(例如,Muñoz,1992;Dielforder等,2019)。 这些造山带的结构沿走向变化很大,其他裂谷反转造山带表现出一定范围的对称性和冲断带辐散(图 1;例如,大高加索、爱丽丝泉[澳大利亚]、阿拉苏伊-西刚果[巴西]和非洲],Rocas Verdes [南美洲];Philip 等人,1989;Raimondo 等人,2014;Fossen 等人,2020),但对这种变异性的控制知之甚少。我们提出了二维(2-D)地球动力学数值模型,旨在探索反转前裂谷的初始条件与由此产生的裂谷反转造山带的结构之间的联系。我们发现裂谷结构、裂谷持续时间、裂谷后冷却和收敛速度的变化极大地改变了由此产生的造山带的大规模结构,产生的模型显示了高阿特拉斯的分布式岩石圈增厚,以及高阿特拉斯的不对称岩石圈逆冲。比利牛斯山,以及其他自然裂谷反转造山带的变化。我们使用开源有限元代码 ASPECT 模拟了二维陆内裂谷反转(Kronbichler 等人,2012 年;Heister 等人,2017 年;Naliboff 等人) al.,2020;Bangerth 等人,2021;有关详细方法,请参阅补充材料1)。为了系统地比较裂谷结构、裂谷持续时间、裂谷后冷却和收敛速度的竞争效应,我们在1000×600 km的模型域中进行了16次模型模拟(图2A;表1)。每个模型首先使用岩石圈厚度和伸展速度的不同组合,从大陆岩石圈的初始块体发展出窄或宽的裂谷结构(图2B,表1;例如,Tetreault 和 Buiter,2018)。 我们在岩石圈破裂时或达到破裂所需的模型时间的一半时停止延伸。我们对这四个裂谷中的每一个进行了反转,要么没有裂谷后冷却阶段,要么经过 20 m.y 的冷却期。初步了解裂谷后冷却阶段对造山风格的影响。对于这八个模型中的每一个,我们在反演过程中施加了两种不同的收敛速度(1 cm/yr、5 cm/yr),持续时间按比例缩放(20 m.y.、4 m.y.),以便每个造山带经历相同量的总收敛(200 km)。我们的几个裂谷反转造山带模型的特点是沿着岩石圈规模剪切带,一块岩石圈不对称地逆冲到另一块岩石圈下方(AU 型,图 2C)。这种行为以模型 1 为例,模型 1 是由狭窄裂谷在岩石圈破裂过程中以 1 厘米/年的速度立即反转而形成的(图 2A;表 1)。在这个模型中,裂谷两侧的初始对称隆起让位于沿前裂谷轴右侧的左倾剪切带的大部分应变局部化(图2C)。在模型运行接近结束时,变形既沿着合成剪切带传播到主结构的右侧,又沿着相反的反冲力传播到左侧。相比之下,第二组模型没有沿着岩石圈规模的逆冲剪切局部化变形但由于沿着以前的正断层(DT 型)反转,岩石圈发生了分布式增厚。模型 5(图 2C)展示了这种变形方式,并跟踪了宽裂谷以 1 厘米/年的速度立即反转,该裂谷已延伸到岩石圈破裂的一半(图 2A;表 1)。裂谷期间的分布式变形留下约 400 公里宽的区域,主要是上地壳正断层,没有明显的裂谷轴。 反转过程中的压缩导致这些结构随着下地壳和地幔岩石圈的屈曲和褶皱而以逆断层的形式重新激活。在第三组模型中,变形沿着岩石圈尺度剪切带不对称地局部化,但各个剪切带都是短暂的。当相反极性的新剪切带接管时,它们会被横切(PF 型)。这种造山风格的端元案例是模型 3(图 2C),它是由于岩石圈完全破裂时狭窄裂谷以 1 厘米/年的速度立即反转而产生的(图 2A;表 1)。在这种情况下,裂谷轴处最初的对称软流圈上升流让位于沿着两个右倾岩石圈尺度剪切带的局部变形,然后这些剪切带随后被左倾剪切带横切。由此产生的造山带基本上是对称的,只有一点点右向辐散(图 2C)。模型结果的一半可以分为明显类型的 AU、DT 或 PF 裂谷反转造山带,而另一半则表现出以下造山作用:性质处于中间(图3)。中间行为通常是由于随着反演的进行而变形局部化的增加,DT 型导致 PF 型(模型 15)或 AU 型(模型 6、7、8 和 14),PF 型导致 AU 型(模型 2 和 14)。 10)。这种趋势的例外是模型 4,其中沿着一对左倾和右倾剪切带(样式 PF)的初始定位让位于更分布的变形(样式 DT)。为了可视化此处探索的模型参数之间的关系以及由此产生的结构样式,我们在示意性三元图上为每个模型分配一个位置,其中顶点代表样式 AU、DT 和 PF(图 3)。 我们还根据最终造山带主要结构的整体趋同性,将图 1 中显示的每个天然造山带放置在该图上。每个造山带的构造取决于产生它的特定参数集合。然而,各个参数与我们的三个端元造山样式之间存在一般模式。对造山样式影响最大的是裂谷的结构(图3)。以狭窄裂谷开始的裂谷反转造山带往往会沿着岩石圈尺度剪切带产生更多的局部变形,导致明显的不对称逆冲(AU 型)或极性翻转(PF 型)。相比之下,宽裂谷的反转往往会导致造山带分布更厚(DT 型)。然而,这种模式并不适用于整个参数空间,其中一个由狭窄裂谷形成的造山带(模型 4)表现出 DT 型元素,而多个造山带由宽裂谷形成(模型 6、7、8、14、15)和 16) 至少显示出 AU 或 PF 样式的某些元素。裂谷后冷却和裂谷持续时间的影响不太系统化。裂谷至岩石圈完全破裂而不是半破裂会促进局部变形(AU 和 PF 型),尽管这很大程度上取决于裂谷结构(图 3)。狭窄裂谷中的完全破裂倾向于促进 PF 型超过 AU 型(例如模型 3 和 12),而完全破裂后宽裂谷的反转则促进 AU 型超过 DT 型(例如模型 7、8 和 16)。裂后冷却促进变形局部化(AU 和 PF 型)。用于狭窄裂谷的反转(例如,模型 2、10 和 12),裂谷后冷却阶段往往会导致交替极性的剪切带(PF 型)而不是不对称逆冲(AU 型),而对于宽裂谷的反演(例如模型 6、 14 和 16),裂谷后冷却往往会导致更明显的不对称(AU 型)行为(图 3)。收敛速度对由此产生的造山带的结构影响较小,但一般来说更快收敛速度似乎促进了不对称的逆冲(AU 型)。通过比较模型 3(1 厘米/年)和模型 11(5 厘米/年)可以看出最显着的影响,除了收敛速度之外,它们在设置上是等效的。模型 3 是 PF 型造山带的范例(图 2C),而模型 11 则表现出 AU 型造山带的不对称逆冲代表(图 3)。我们的研究与之前的工作不同,探索了裂谷反转造山作用中的结构变异范围:一般流程(有关其他详细信息,请参阅补充材料)。集中于比利牛斯山脉的研究往往以接近岩石圈破裂的狭窄裂谷结构为特征,没有裂谷后冷却,导致造山带类似于 AU 型(Jammes 等,2014;Dielforder 等,2019;Jourdon 等, 2019)。一些大陆碰撞模拟研究包括一个或多个裂谷反转造山带,用于与没有碰撞前延伸的模型进行比较,使用类似于也产生 AU 型造山带的比利牛斯山脉模型的参数(Jammes 和 Huismans,2012 年;Wolf 等人, 2021)。一项强调高阿特拉斯的研究包括宽裂谷延伸至岩石圈破裂,并伴有显着的裂谷后冷却,由此产生的造山带表现出 DT 风格(Buiter 等,2009)。 通过探索初始裂谷条件中更广泛的一阶变化,我们在一套模型结果中捕获了比利牛斯山脉模型中看到的 AU 造山风格和阿特拉斯启发模型中看到的 DT 风格,此外与高阿特拉斯山脉或比利牛斯山脉不同的其他变形模式(PF 型和中间型)(图 3)。这一初步探索表明,发展特定结构型式的路径不是唯一的;裂谷结构、裂谷持续时间、裂谷后冷却和/或收敛速度的不同组合可以产生相同的一阶样式(图3)。因此,在天然的陆内裂谷反转造山带中,观察到的结构样式可能提供一些初始条件的指示,但不能唯一地确定一组条件。例如,在比利牛斯山脉或大高加索西部(图 1)观察到的不对称逆冲(AU 型)可能是由于部分岩石圈破裂后立即较慢地闭合狭窄裂谷(模型 1)或通过较快地闭合裂谷而产生的。狭窄的裂谷延伸到完全岩石圈破裂(模型 11)。由于仅这些造山带目前的结构不足以唯一地识别这些参数,因此使用额外的观测来限制其地质历史至关重要。我们的研究强调需要收集能够区分自然造山带增量构造历史的数据。我们特别注意到低温热年代学的重要性,它可以对碰撞造山带内主要结构(例如造山带)变形的时间和幅度提供限制。,McQuarrie 和 Ehlers,2017),以及沉积记录,跟踪裂谷和碰撞过程中沉积和侵蚀的变化(例如,Tye 等人,2020)。未来将这些一级构造样式及其裂谷历史与热年代学和/或沉积盆地演化模式联系起来的建模研究对于揭示陆内裂谷反转造山带的完整历史至关重要。陆内裂谷反转的二维地球动力学数值模拟表明裂谷反转造山带的结构样式高度依赖于初始条件,包括裂谷结构、裂谷持续时间、裂谷后冷却和收敛速度。由这些参数变化产生的模型造山带可以使用三种结构类型进行分类:不对称逆冲(AU)、分布式增厚(DT)和局部极性翻转(PF)。尽管窄裂谷、未实现岩石圈破裂的裂谷以及反演前冷却的裂谷往往会促进局部变形(AU 和 PF)超过分布式变形(DT),但结构样式和各个参数之间不存在系统关系。这些模型结果协调了天然裂谷反转造山带中看到的结构样式的范围,但也表明可以从多个裂谷历史中产生单一的结构样式。这项研究得到了美国国家科学基金会 (NSF) 授予 E. Cowgill 的拨款 2050623 的支持。 ASPECT 由地球动力学计算基础设施 (CIG) 主办,并得到 NSF 拨款 0949446 和 1550901 的支持。这项工作主要使用极限科学和工程发现环境 (XSEDE)(Towns 等人,2014)分配 EES210024(E. Cowgill)和 EAR080022N (CIG) 在 Stampede2(德克萨斯州高级计算中心 [TACC])上,由 NSF 拨款 1548562 支持。使用高级网络基础设施协调生态系统运行其他模型:服务和支持 (ACCESS)(Boerner 等人,2023) Expanse 集群(加州大学圣地亚哥分校圣地亚哥超级计算机中心)上的 EES230094 (D. Vasey) 和 TRA130003(美国塔夫茨大学)分配,由 NSF 拨款 2138259、2138286、2138307、2137603 和 2138296 支持。我们感谢 L Le Pourhiet 和两位匿名审稿人提出建设性评论。
更新日期:2024-05-30
中文翻译:
裂谷历史对陆内裂谷反转造山带构造样式的影响
尽管许多碰撞造山带是在两块大陆之间的海洋岩石圈俯冲之后形成的,但一些造山带是通过大陆裂谷继承的结构反转而在大陆内产生应变局部化的结果。陆内裂谷反转造山带表现出一系列的结构样式,但这种变化的根本原因尚未得到广泛探索。我们利用陆内裂谷反演数值模型来研究裂谷结构、裂谷持续时间、裂谷后冷却和收敛速度等参数对造山带结构的影响。我们的模型再现了裂谷反转造山带的自然变化,并且可以使用三种端元类型进行分类:不对称逆冲(AU)、分布式增厚(DT)和局部极性翻转(PF)。与宽裂谷相比,窄裂谷的反转往往会产生具有更多局部变形(AU 和 PF 型)的造山带。然而,我们研究的参数的多种组合可以产生相同的结构样式。因此,我们的模型表明造山结构与反转之前和期间的条件之间没有独特的关系。由于裂谷反转造山作用的类型很大程度上取决于反转之前的裂谷历史,因此了解裂谷反转之前的地质历史对于将造山结构转化为产生该结构的过程至关重要。板块边界碰撞造山带沿边界形成当两个大陆块在中间的海洋岩石圈俯冲后发生碰撞时,就会形成构造板块(例如,Dewey 和 Bird,1970)。相比之下,板内造山带通过沿着预先存在的弱点进行应变定位而在大陆板块内形成(例如,Vilotte 等人,2017)。,1982;齐格勒等人,1995;雷蒙多等人,2014)。一些板内造山带重新激活了过去碰撞中继承的弱点(例如天山[中亚];Jourdon等,2018),而其他造山带则利用了大陆裂谷期间形成的弱点,因此被认为是裂谷反转的结果(图1;例如,Cooper 等人,1989;Beauchamp 等人,1996;Marshak 等人,2000)。一个常见的假设似乎是,陆内裂谷反转造山带的结构类型应与板块边界造山带不同,因为在裂谷反转期间,预计会通过伸展结构的重新激活而发生汇聚,从而导致分布式岩石圈增厚(例如,岩石圈增厚)。 ,Buiter 等人,2009;Vincent 等人,2016,2018)。然而,许多裂谷反转造山带的特征是沿着岩石圈尺度剪切带的不对称逆冲作用和主要褶皱逆冲系统的发育(图1;例如,Jammes等,2009),与板块边界造山带(例如,Willett等)相当。 al., 1993; Beaumont et al., 1996)。裂谷反转造山作用的地球动力学数值模拟通常集中在高阿特拉斯山脉(摩洛哥)和比利牛斯山脉(西班牙和法国)(例如,Buiter et al., 2009; Jammes et al., 2009) al., 2014; Dielforder et al., 2019; Jourdon et al., 2019; Wolf et al., 2021),尽管这些造山带的结构样式不同(图 1)。高阿特拉斯大体上是对称的,两侧是辐度相反的褶皱逆冲带,并且没有表现出一个岩石圈块在另一个岩石圈块之下的逆冲(例如,Beauchamp 等,1999;Gomez 等,2000)。相比之下,比利牛斯山脉表现出不对称的岩石圈逆冲和褶皱逆冲带发育,集中在造山带的一侧(例如,Muñoz,1992;Dielforder等,2019)。 这些造山带的结构沿走向变化很大,其他裂谷反转造山带表现出一定范围的对称性和冲断带辐散(图 1;例如,大高加索、爱丽丝泉[澳大利亚]、阿拉苏伊-西刚果[巴西]和非洲],Rocas Verdes [南美洲];Philip 等人,1989;Raimondo 等人,2014;Fossen 等人,2020),但对这种变异性的控制知之甚少。我们提出了二维(2-D)地球动力学数值模型,旨在探索反转前裂谷的初始条件与由此产生的裂谷反转造山带的结构之间的联系。我们发现裂谷结构、裂谷持续时间、裂谷后冷却和收敛速度的变化极大地改变了由此产生的造山带的大规模结构,产生的模型显示了高阿特拉斯的分布式岩石圈增厚,以及高阿特拉斯的不对称岩石圈逆冲。比利牛斯山,以及其他自然裂谷反转造山带的变化。我们使用开源有限元代码 ASPECT 模拟了二维陆内裂谷反转(Kronbichler 等人,2012 年;Heister 等人,2017 年;Naliboff 等人) al.,2020;Bangerth 等人,2021;有关详细方法,请参阅补充材料1)。为了系统地比较裂谷结构、裂谷持续时间、裂谷后冷却和收敛速度的竞争效应,我们在1000×600 km的模型域中进行了16次模型模拟(图2A;表1)。每个模型首先使用岩石圈厚度和伸展速度的不同组合,从大陆岩石圈的初始块体发展出窄或宽的裂谷结构(图2B,表1;例如,Tetreault 和 Buiter,2018)。 我们在岩石圈破裂时或达到破裂所需的模型时间的一半时停止延伸。我们对这四个裂谷中的每一个进行了反转,要么没有裂谷后冷却阶段,要么经过 20 m.y 的冷却期。初步了解裂谷后冷却阶段对造山风格的影响。对于这八个模型中的每一个,我们在反演过程中施加了两种不同的收敛速度(1 cm/yr、5 cm/yr),持续时间按比例缩放(20 m.y.、4 m.y.),以便每个造山带经历相同量的总收敛(200 km)。我们的几个裂谷反转造山带模型的特点是沿着岩石圈规模剪切带,一块岩石圈不对称地逆冲到另一块岩石圈下方(AU 型,图 2C)。这种行为以模型 1 为例,模型 1 是由狭窄裂谷在岩石圈破裂过程中以 1 厘米/年的速度立即反转而形成的(图 2A;表 1)。在这个模型中,裂谷两侧的初始对称隆起让位于沿前裂谷轴右侧的左倾剪切带的大部分应变局部化(图2C)。在模型运行接近结束时,变形既沿着合成剪切带传播到主结构的右侧,又沿着相反的反冲力传播到左侧。相比之下,第二组模型没有沿着岩石圈规模的逆冲剪切局部化变形但由于沿着以前的正断层(DT 型)反转,岩石圈发生了分布式增厚。模型 5(图 2C)展示了这种变形方式,并跟踪了宽裂谷以 1 厘米/年的速度立即反转,该裂谷已延伸到岩石圈破裂的一半(图 2A;表 1)。裂谷期间的分布式变形留下约 400 公里宽的区域,主要是上地壳正断层,没有明显的裂谷轴。 反转过程中的压缩导致这些结构随着下地壳和地幔岩石圈的屈曲和褶皱而以逆断层的形式重新激活。在第三组模型中,变形沿着岩石圈尺度剪切带不对称地局部化,但各个剪切带都是短暂的。当相反极性的新剪切带接管时,它们会被横切(PF 型)。这种造山风格的端元案例是模型 3(图 2C),它是由于岩石圈完全破裂时狭窄裂谷以 1 厘米/年的速度立即反转而产生的(图 2A;表 1)。在这种情况下,裂谷轴处最初的对称软流圈上升流让位于沿着两个右倾岩石圈尺度剪切带的局部变形,然后这些剪切带随后被左倾剪切带横切。由此产生的造山带基本上是对称的,只有一点点右向辐散(图 2C)。模型结果的一半可以分为明显类型的 AU、DT 或 PF 裂谷反转造山带,而另一半则表现出以下造山作用:性质处于中间(图3)。中间行为通常是由于随着反演的进行而变形局部化的增加,DT 型导致 PF 型(模型 15)或 AU 型(模型 6、7、8 和 14),PF 型导致 AU 型(模型 2 和 14)。 10)。这种趋势的例外是模型 4,其中沿着一对左倾和右倾剪切带(样式 PF)的初始定位让位于更分布的变形(样式 DT)。为了可视化此处探索的模型参数之间的关系以及由此产生的结构样式,我们在示意性三元图上为每个模型分配一个位置,其中顶点代表样式 AU、DT 和 PF(图 3)。 我们还根据最终造山带主要结构的整体趋同性,将图 1 中显示的每个天然造山带放置在该图上。每个造山带的构造取决于产生它的特定参数集合。然而,各个参数与我们的三个端元造山样式之间存在一般模式。对造山样式影响最大的是裂谷的结构(图3)。以狭窄裂谷开始的裂谷反转造山带往往会沿着岩石圈尺度剪切带产生更多的局部变形,导致明显的不对称逆冲(AU 型)或极性翻转(PF 型)。相比之下,宽裂谷的反转往往会导致造山带分布更厚(DT 型)。然而,这种模式并不适用于整个参数空间,其中一个由狭窄裂谷形成的造山带(模型 4)表现出 DT 型元素,而多个造山带由宽裂谷形成(模型 6、7、8、14、15)和 16) 至少显示出 AU 或 PF 样式的某些元素。裂谷后冷却和裂谷持续时间的影响不太系统化。裂谷至岩石圈完全破裂而不是半破裂会促进局部变形(AU 和 PF 型),尽管这很大程度上取决于裂谷结构(图 3)。狭窄裂谷中的完全破裂倾向于促进 PF 型超过 AU 型(例如模型 3 和 12),而完全破裂后宽裂谷的反转则促进 AU 型超过 DT 型(例如模型 7、8 和 16)。裂后冷却促进变形局部化(AU 和 PF 型)。用于狭窄裂谷的反转(例如,模型 2、10 和 12),裂谷后冷却阶段往往会导致交替极性的剪切带(PF 型)而不是不对称逆冲(AU 型),而对于宽裂谷的反演(例如模型 6、 14 和 16),裂谷后冷却往往会导致更明显的不对称(AU 型)行为(图 3)。收敛速度对由此产生的造山带的结构影响较小,但一般来说更快收敛速度似乎促进了不对称的逆冲(AU 型)。通过比较模型 3(1 厘米/年)和模型 11(5 厘米/年)可以看出最显着的影响,除了收敛速度之外,它们在设置上是等效的。模型 3 是 PF 型造山带的范例(图 2C),而模型 11 则表现出 AU 型造山带的不对称逆冲代表(图 3)。我们的研究与之前的工作不同,探索了裂谷反转造山作用中的结构变异范围:一般流程(有关其他详细信息,请参阅补充材料)。集中于比利牛斯山脉的研究往往以接近岩石圈破裂的狭窄裂谷结构为特征,没有裂谷后冷却,导致造山带类似于 AU 型(Jammes 等,2014;Dielforder 等,2019;Jourdon 等, 2019)。一些大陆碰撞模拟研究包括一个或多个裂谷反转造山带,用于与没有碰撞前延伸的模型进行比较,使用类似于也产生 AU 型造山带的比利牛斯山脉模型的参数(Jammes 和 Huismans,2012 年;Wolf 等人, 2021)。一项强调高阿特拉斯的研究包括宽裂谷延伸至岩石圈破裂,并伴有显着的裂谷后冷却,由此产生的造山带表现出 DT 风格(Buiter 等,2009)。 通过探索初始裂谷条件中更广泛的一阶变化,我们在一套模型结果中捕获了比利牛斯山脉模型中看到的 AU 造山风格和阿特拉斯启发模型中看到的 DT 风格,此外与高阿特拉斯山脉或比利牛斯山脉不同的其他变形模式(PF 型和中间型)(图 3)。这一初步探索表明,发展特定结构型式的路径不是唯一的;裂谷结构、裂谷持续时间、裂谷后冷却和/或收敛速度的不同组合可以产生相同的一阶样式(图3)。因此,在天然的陆内裂谷反转造山带中,观察到的结构样式可能提供一些初始条件的指示,但不能唯一地确定一组条件。例如,在比利牛斯山脉或大高加索西部(图 1)观察到的不对称逆冲(AU 型)可能是由于部分岩石圈破裂后立即较慢地闭合狭窄裂谷(模型 1)或通过较快地闭合裂谷而产生的。狭窄的裂谷延伸到完全岩石圈破裂(模型 11)。由于仅这些造山带目前的结构不足以唯一地识别这些参数,因此使用额外的观测来限制其地质历史至关重要。我们的研究强调需要收集能够区分自然造山带增量构造历史的数据。我们特别注意到低温热年代学的重要性,它可以对碰撞造山带内主要结构(例如造山带)变形的时间和幅度提供限制。,McQuarrie 和 Ehlers,2017),以及沉积记录,跟踪裂谷和碰撞过程中沉积和侵蚀的变化(例如,Tye 等人,2020)。未来将这些一级构造样式及其裂谷历史与热年代学和/或沉积盆地演化模式联系起来的建模研究对于揭示陆内裂谷反转造山带的完整历史至关重要。陆内裂谷反转的二维地球动力学数值模拟表明裂谷反转造山带的结构样式高度依赖于初始条件,包括裂谷结构、裂谷持续时间、裂谷后冷却和收敛速度。由这些参数变化产生的模型造山带可以使用三种结构类型进行分类:不对称逆冲(AU)、分布式增厚(DT)和局部极性翻转(PF)。尽管窄裂谷、未实现岩石圈破裂的裂谷以及反演前冷却的裂谷往往会促进局部变形(AU 和 PF)超过分布式变形(DT),但结构样式和各个参数之间不存在系统关系。这些模型结果协调了天然裂谷反转造山带中看到的结构样式的范围,但也表明可以从多个裂谷历史中产生单一的结构样式。这项研究得到了美国国家科学基金会 (NSF) 授予 E. Cowgill 的拨款 2050623 的支持。 ASPECT 由地球动力学计算基础设施 (CIG) 主办,并得到 NSF 拨款 0949446 和 1550901 的支持。这项工作主要使用极限科学和工程发现环境 (XSEDE)(Towns 等人,2014)分配 EES210024(E. Cowgill)和 EAR080022N (CIG) 在 Stampede2(德克萨斯州高级计算中心 [TACC])上,由 NSF 拨款 1548562 支持。使用高级网络基础设施协调生态系统运行其他模型:服务和支持 (ACCESS)(Boerner 等人,2023) Expanse 集群(加州大学圣地亚哥分校圣地亚哥超级计算机中心)上的 EES230094 (D. Vasey) 和 TRA130003(美国塔夫茨大学)分配,由 NSF 拨款 2138259、2138286、2138307、2137603 和 2138296 支持。我们感谢 L Le Pourhiet 和两位匿名审稿人提出建设性评论。