当前位置: X-MOL 学术Comm. Pure Appl. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Almost sharp lower bound for the nodal volume of harmonic functions
Communications on Pure and Applied Mathematics ( IF 3.1 ) Pub Date : 2024-05-29 , DOI: 10.1002/cpa.22207
Alexander Logunov 1, 2 , Lakshmi Priya M. E. 3 , Andrea Sartori 3
Affiliation  

This paper focuses on a relation between the growth of harmonic functions and the Hausdorff measure of their zero sets. Let be a real‐valued harmonic function in with and . We prove where the doubling index is a notion of growth defined by This gives an almost sharp lower bound for the Hausdorff measure of the zero set of , which is conjectured to be linear in . The new ingredients of the article are the notion of stable growth, and a multiscale induction technique for a lower bound for the distribution of the doubling index of harmonic functions. It gives a significant imuprovement over the previous best‐known bound , which implied Nadirashvili's conjecture.

中文翻译:


调和函数的节点体积几乎尖锐的下界



本文重点研究调和函数的增长与其零集的豪斯多夫测度之间的关系。让 是 和 中的实值调和函数。我们证明倍增指数是由下式定义的增长概念。这为 的零集的豪斯多夫测度提供了几乎尖锐的下界,推测它在 中是线性的。本文的新内容是稳定增长的概念,以及调和函数倍增指数分布下界的多尺度归纳技术。它比之前最著名的界限有了显着的改进,这暗示了纳迪拉什维利的猜想。
更新日期:2024-05-29
down
wechat
bug