当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magnesium fluoride-engineered UiO-66 artificial protection layers for dendrite-free lithium metal batteries
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-05-29 , DOI: 10.1039/d4ee01428f
Kunik Jang 1 , Hee Jo Song 2 , Jung Been Park 1 , Sang Won Jung 3 , Dong-Wan Kim 1, 3
Affiliation  

Li metal is considered an ideal anode material for high-energy-density rechargeable Li metal batteries (LMBs). Nevertheless, sluggish Li+ transport kinetics and uncontrolled Li dendrite growth result in poor cycling performance, impeding its practical application. In this study, MgF2-infiltrated UiO-66 nanoparticles (I-MgF2@UiO) with F-terminated groups are developed as artificial protective layers for Li metal anodes. The fluorination of UiO-66-based metal–organic framework nanoparticles modifies their nanopores to allow the permeation of MgF2. The F-terminated groups and infiltrated MgF2 in the I-MgF2@UiO electrode effectively facilitate the dissociation of the lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt and the desolvation of the solvated Li+ clusters, resulting in fast Li+ transport kinetics with a high Li+ transference number and ionic conductivity. Furthermore, lithiophilic MgxLiy alloys and LiF-rich solid electrolyte interphase (SEI) that form on the Li metal during the Li plating/stripping process provide a homogeneous Li+ flux and suppress Li dendritic growth. Benefiting from the I-MgF2@UiO artificial layer, full cells coupled with a LiFePO4 cathode show a long lifespan of over 2000 cycles even at a high current rate of 10C. The findings provide new insights and a promising strategy for the practical application of high-energy-density LMBs.

中文翻译:


用于无枝晶锂金属电池的氟化镁工程 UiO-66 人工保护层



锂金属被认为是高能量密度可充电锂金属电池(LMB)的理想负极材料。然而,缓慢的锂 + 传输动力学和不受控制的锂枝晶生长导致循环性能不佳,阻碍了其实际应用。在本研究中,开发了具有F封端基团的MgF 2 渗透的UiO-66纳米颗粒(I-MgF 2 @UiO)作为锂金属负极的人工保护层。 UiO-66 基金属有机骨架纳米颗粒的氟化修饰了其纳米孔,以允许 MgF 2 渗透。 I-MgF 2 @UiO 电极中的 F 封端基团和渗透的 MgF 2 有效促进了双(三氟甲磺酰基)亚胺锂 (LiTFSI) 盐的解离和去溶剂化。溶剂化的 Li + 簇,导致快速的 Li + 传输动力学,具有高 Li + 迁移数和离子电导率。此外,在镀锂/剥离过程中在锂金属上形成的亲锂镁 x Li y 合金和富含 LiF 的固体电解质中间相 (SEI) 提供了均匀的 Li + 通量并抑制锂枝晶生长。受益于 I-MgF 2 @UiO 人造层,与 LiFePO 4 阴极结合的全电池即使在 10C 的高电流倍率下也表现出超过 2000 次循环的长寿命。这些发现为高能量密度 LMB 的实际应用提供了新的见解和有前景的策略。
更新日期:2024-05-29
down
wechat
bug