当前位置: X-MOL 学术npj Parkinsons Dis. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Digital outcome measures from smartwatch data relate to non-motor features of Parkinson’s disease
npj Parkinson's Disease ( IF 6.7 ) Pub Date : 2024-05-29 , DOI: 10.1038/s41531-024-00719-w
Ann-Kathrin Schalkamp 1, 2, 3 , Neil A Harrison 4, 5 , Kathryn J Peall 4, 6 , Cynthia Sandor 1, 2, 3
Affiliation  

Monitoring of Parkinson’s disease (PD) has seen substantial improvement over recent years as digital sensors enable a passive and continuous collection of information in the home environment. However, the primary focus of this work has been motor symptoms, with little focus on the non-motor aspects of the disease. To address this, we combined longitudinal clinical non-motor assessment data and digital multi-sensor data from the Verily Study Watch for 149 participants from the Parkinson’s Progression Monitoring Initiative (PPMI) cohort with a diagnosis of PD. We show that digitally collected physical activity and sleep measures significantly relate to clinical non-motor assessments of cognitive, autonomic, and daily living impairment. However, the poor predictive performance we observed, highlights the need for better targeted digital outcome measures to enable monitoring of non-motor symptoms.



中文翻译:


智能手表数据的数字结果测量与帕金森病的非运动特征相关



近年来,随着数字传感器能够被动、连续地收集家庭环境中的信息,帕金森病 (PD) 的监测取得了显着的进步。然而,这项工作的主要焦点是运动症状,很少关注疾病的非运动方面。为了解决这个问题,我们将纵向临床非运动评估数据和来自 Verily 研究观察的数字多传感器数据结合起来,这些数据来自帕金森病进展监测计划 (PPMI) 队列的 149 名参与者,诊断为帕金森病。我们表明,数字收集的身体活动和睡眠测量与认知、自主神经和日常生活障碍的临床非运动评估显着相关。然而,我们观察到的预测性能不佳,凸显了需要更有针对性的数字结果测量来监测非运动症状。

更新日期:2024-05-29
down
wechat
bug