当前位置:
X-MOL 学术
›
Rev. Mod. Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Colloquium: Spin-orbit effects in superconducting hybrid structures
Reviews of Modern Physics ( IF 45.9 ) Pub Date : 2024-05-28 , DOI: 10.1103/revmodphys.96.021003 Morten Amundsen 1 , Jacob Linder 2 , Jason W. A. Robinson 3 , Igor Žutić 4 , Niladri Banerjee 5
Reviews of Modern Physics ( IF 45.9 ) Pub Date : 2024-05-28 , DOI: 10.1103/revmodphys.96.021003 Morten Amundsen 1 , Jacob Linder 2 , Jason W. A. Robinson 3 , Igor Žutić 4 , Niladri Banerjee 5
Affiliation
Spin-orbit coupling (SOC) relates to the interaction between an electron’s motion and its spin and is ubiquitous in solid-state systems. Although the effect of SOC in normal-state phenomena has been extensively studied, its role in superconducting hybrid structures and devices elicits many unexplored questions. In conjunction with broken symmetries and material inhomogeneities within superconducting hybrid structures, SOC may have contributions beyond its effects in homogeneous materials. Notably, even with well-established magnetic or nonmagnetic materials and conventional 𝑠 -wave spin-singlet superconductors, SOC leads to emergent phenomena including equal-spin-triplet pairing and topological superconductivity (hosting Majorana states), a modified current-phase relationship in Josephson junctions, and nonreciprocal transport, including superconducting diode effects. SOC is also responsible for transforming quasiparticles in superconducting structures, which enhances the spin Hall effect and changes the spin dynamics. Taken together, SOC in superconducting hybrid structures and the potential for electric tuning of the SOC strength create interesting possibilities to advance superconducting spintronic devices for energy-efficient computing and enable topological fault-tolerant quantum computing. By providing a description of experimental techniques and theoretical methods to study SOC, this Colloquium describes the current understanding of resulting phenomena in superconducting structures and offers a framework to select and design a growing class of materials systems where SOC plays an important role.
中文翻译:
专题讨论会:超导混合结构中的自旋轨道效应
自旋轨道耦合 (SOC) 与电子运动与其自旋之间的相互作用有关,在固态系统中无处不在。尽管 SOC 在正常状态现象中的影响已被广泛研究,但它在超导混合结构和器件中的作用引发了许多尚未探索的问题。结合超导混合结构中的破对称性和材料不均匀性,SOC 可能产生超出其对均质材料的影响的影响。值得注意的是,即使使用成熟的磁性或非磁性材料以及传统的s 波自旋单晶态超导体,SOC 也会导致新兴现象,包括等自旋-三重态配对和拓扑超导性(承载马约拉纳态)、约瑟夫森结中改进的电流-相位关系以及非互易传输,包括超导二极管效应。SOC 还负责转化超导结构中的准粒子,从而增强自旋霍尔效应并改变自旋动力学。综上所述,超导混合结构中的 SOC 和 SOC 强度的电调谐潜力为推进超导自旋电子器件以实现节能计算和实现拓扑容错量子计算创造了有趣的可能性。通过描述研究 SOC 的实验技术和理论方法,本座谈会描述了当前对超导结构中产生的现象的理解,并提供了一个框架来选择和设计越来越多的材料系统,其中 SOC 发挥着重要作用。
更新日期:2024-05-28
中文翻译:
专题讨论会:超导混合结构中的自旋轨道效应
自旋轨道耦合 (SOC) 与电子运动与其自旋之间的相互作用有关,在固态系统中无处不在。尽管 SOC 在正常状态现象中的影响已被广泛研究,但它在超导混合结构和器件中的作用引发了许多尚未探索的问题。结合超导混合结构中的破对称性和材料不均匀性,SOC 可能产生超出其对均质材料的影响的影响。值得注意的是,即使使用成熟的磁性或非磁性材料以及传统的