当前位置:
X-MOL 学术
›
Sep. Purif. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Precise structure-tailoring of multicomponent nanocatalysts enabled by continuous flow-controlled flash nanoprecipitation technique
Separation and Purification Technology ( IF 8.1 ) Pub Date : 2024-05-18 , DOI: 10.1016/j.seppur.2024.128008 Zhinan Fu , Yueping Bao , Yuhua Zhang , Zheng Yang , Lihui Zhou , Li Li , Sheng Dai , Xiao Hu , Xuhong Guo
Separation and Purification Technology ( IF 8.1 ) Pub Date : 2024-05-18 , DOI: 10.1016/j.seppur.2024.128008 Zhinan Fu , Yueping Bao , Yuhua Zhang , Zheng Yang , Lihui Zhou , Li Li , Sheng Dai , Xiao Hu , Xuhong Guo
Nanostructured catalysts with diverse compositions offer an exciting prospect for various catalytic applications. The precise control of nanostructures allows to tune the physicochemical properties of nanocatalysts and improve their performance. However, most preparative methods rely on conventional batch systems, which require tedious procedures and cause low productivity. Herein, we reported a novel engineered flash nanoprecipitation (FNP) technique to synthesize well-structured nanocatalysts in a continuous-flow procedure with intelligent operation and high productivity, in which a series of multicomponent bismuth oxyhalides (BiOClBr) were demonstrated as the model catalysts. This method was established on the uninterrupted continuous synthesis of BiOClBr with precisely controlled microstructure by simply altering the flow rate ratio of precursor fluids in the reactor. The computational fluid dynamics (CFD) simulation showed that the automized flow setup could achieve the accurate control over the intensified fluid mixing. Significantly, a volcano relationship between the halogen compositions and catalytic activities toward photodegradation of tetracycline (TC) was observed, which indicated that the structural changes enabled band structure-dependent regulation. The FNP-processed BiOClBr possessed a balanced redox ability and light absorption, thus located at the peak of volcano with a five-fold enhancement of intrinsic photocatalytic activity. Overall, this work provides a promising prospect of continuous-flow technique in the engineered manufacturing of the advanced nanomaterials, offering fine-tuning of the nanostructures of materials with low cost and high productivity.
中文翻译:
通过连续流量控制的闪蒸纳米沉淀技术实现多组分纳米催化剂的精确结构定制
具有不同成分的纳米结构催化剂为各种催化应用提供了令人兴奋的前景。纳米结构的精确控制可以调整纳米催化剂的物理化学性质并提高其性能。然而,大多数制备方法依赖于传统的批处理系统,这需要繁琐的程序并导致生产率低下。在此,我们报道了一种新颖的工程闪蒸纳米沉淀(FNP)技术,可以在连续流动过程中合成结构良好的纳米催化剂,具有智能操作和高生产率,其中一系列多组分卤氧化铋(BiOClBr)被证明是模型催化剂。该方法建立在通过简单地改变反应器中前驱体流体的流量比来不间断连续合成具有精确控制的微观结构的BiOClBr的基础上。计算流体动力学(CFD)模拟表明,自动化流动设置可以实现对强化流体混合的精确控制。值得注意的是,观察到卤素组成与四环素(TC)光降解催化活性之间存在火山关系,这表明结构变化实现了能带结构依赖性调节。 FNP处理的BiOClBr具有平衡的氧化还原能力和光吸收能力,因此位于火山峰,其内在光催化活性提高了五倍。总体而言,这项工作为先进纳米材料的工程制造中的连续流技术提供了广阔的前景,以低成本和高生产率对材料的纳米结构进行微调。
更新日期:2024-05-18
中文翻译:
通过连续流量控制的闪蒸纳米沉淀技术实现多组分纳米催化剂的精确结构定制
具有不同成分的纳米结构催化剂为各种催化应用提供了令人兴奋的前景。纳米结构的精确控制可以调整纳米催化剂的物理化学性质并提高其性能。然而,大多数制备方法依赖于传统的批处理系统,这需要繁琐的程序并导致生产率低下。在此,我们报道了一种新颖的工程闪蒸纳米沉淀(FNP)技术,可以在连续流动过程中合成结构良好的纳米催化剂,具有智能操作和高生产率,其中一系列多组分卤氧化铋(BiOClBr)被证明是模型催化剂。该方法建立在通过简单地改变反应器中前驱体流体的流量比来不间断连续合成具有精确控制的微观结构的BiOClBr的基础上。计算流体动力学(CFD)模拟表明,自动化流动设置可以实现对强化流体混合的精确控制。值得注意的是,观察到卤素组成与四环素(TC)光降解催化活性之间存在火山关系,这表明结构变化实现了能带结构依赖性调节。 FNP处理的BiOClBr具有平衡的氧化还原能力和光吸收能力,因此位于火山峰,其内在光催化活性提高了五倍。总体而言,这项工作为先进纳米材料的工程制造中的连续流技术提供了广阔的前景,以低成本和高生产率对材料的纳米结构进行微调。