当前位置:
X-MOL 学术
›
Mol. Plant
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
WTV2.0: A high-coverage plant volatilomics method with a comprehensive selective ion monitoring acquisition mode
Molecular Plant ( IF 17.1 ) Pub Date : 2024-04-29 , DOI: 10.1016/j.molp.2024.04.012 Honglun Yuan 1 , Yiding Jiangfang 2 , Zhenhuan Liu 2 , Rongxiu Su 1 , Qiao Li 1 , Chuanying Fang 1 , Sishu Huang 2 , Xianqing Liu 1 , Alisdair R Fernie 3 , Jie Luo 4
Molecular Plant ( IF 17.1 ) Pub Date : 2024-04-29 , DOI: 10.1016/j.molp.2024.04.012 Honglun Yuan 1 , Yiding Jiangfang 2 , Zhenhuan Liu 2 , Rongxiu Su 1 , Qiao Li 1 , Chuanying Fang 1 , Sishu Huang 2 , Xianqing Liu 1 , Alisdair R Fernie 3 , Jie Luo 4
Affiliation
Volatilomics is essential for understanding the biological functions and fragrance contributions of plant volatiles. However, the annotation coverage achieved using current untargeted and widely targeted volatomics (WTV) methods has been limited by low sensitivity and/or low acquisition coverage. Here, we introduce WTV 2.0, which enabled the construction of a high-coverage library containing 2111 plant volatiles, and report the development of a comprehensive selective ion monitoring (cSIM) acquisition method, including the selection of characteristic qualitative ions with the minimal ion number for each compound and an optimized segmentation method, that can acquire the smallest but sufficient number of ions for most plant volatiles, as well as the automatic qualitative and semi-quantitative analysis of cSIM data. Importantly, the library and acquisition method we developed can be self-expanded by incorporating compounds not present in the library, utilizing the obtained cSIM data. We showed that WTV 2.0 increases the median signal-to-noise ratio by 7.6-fold compared with the untargeted method, doubled the annotation coverage compared with the untargeted and WTV 1.0 methods in tomato fruit, and led to the discovery of menthofuran as a novel flavor compound in passion fruit. WTV 2.0 is a Python library with a user-friendly interface and is applicable to profiling of volatiles and primary metabolites in any species.
中文翻译:
WTV2.0:一种具有综合选择性离子监测采集模式的高覆盖率植物挥发组学方法
挥发组学对于了解植物挥发物的生物学功能和香味贡献至关重要。然而,使用当前非靶向和广泛靶向伏散原子学 (WTV) 方法实现的注释覆盖率受到低灵敏度和/或低采集覆盖率的限制。在这里,我们介绍了 WTV 2.0,它能够构建包含 2111 种植物挥发物的高覆盖率库,并报告了一种全面的选择性离子监测 (cSIM) 采集方法的开发,包括为每种化合物选择具有最小离子数的特征定性离子和优化的分割方法,该方法可以为大多数植物挥发物采集最少但足够数量的离子, 以及 cSIM 数据的自动定性和半定量分析。重要的是,我们开发的文库和采集方法可以通过掺入文库中不存在的化合物,利用获得的 cSIM 数据进行自我扩展。我们发现,与非靶向方法相比,WTV 2.0 在番茄果实中的中位信噪比增加了 7.6 倍,与非靶向和 WTV 1.0 方法相比,注释覆盖率增加了一倍,并导致薄荷呋喃作为百香果中的一种新型风味化合物的发现。WTV 2.0 是一个具有用户友好界面的 Python 库,适用于任何物种的挥发物和初级代谢物的分析。
更新日期:2024-04-29
中文翻译:
WTV2.0:一种具有综合选择性离子监测采集模式的高覆盖率植物挥发组学方法
挥发组学对于了解植物挥发物的生物学功能和香味贡献至关重要。然而,使用当前非靶向和广泛靶向伏散原子学 (WTV) 方法实现的注释覆盖率受到低灵敏度和/或低采集覆盖率的限制。在这里,我们介绍了 WTV 2.0,它能够构建包含 2111 种植物挥发物的高覆盖率库,并报告了一种全面的选择性离子监测 (cSIM) 采集方法的开发,包括为每种化合物选择具有最小离子数的特征定性离子和优化的分割方法,该方法可以为大多数植物挥发物采集最少但足够数量的离子, 以及 cSIM 数据的自动定性和半定量分析。重要的是,我们开发的文库和采集方法可以通过掺入文库中不存在的化合物,利用获得的 cSIM 数据进行自我扩展。我们发现,与非靶向方法相比,WTV 2.0 在番茄果实中的中位信噪比增加了 7.6 倍,与非靶向和 WTV 1.0 方法相比,注释覆盖率增加了一倍,并导致薄荷呋喃作为百香果中的一种新型风味化合物的发现。WTV 2.0 是一个具有用户友好界面的 Python 库,适用于任何物种的挥发物和初级代谢物的分析。