当前位置: X-MOL 学术Fractals › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
MODIFIED SHRINKING TARGET PROBLEM FOR MATRIX TRANSFORMATIONS OF TORI
Fractals ( IF 3.3 ) Pub Date : 2024-05-21 , DOI: 10.1142/s0218348x24500762
NA YUAN 1 , SHUAILING WANG 2
Affiliation  

In this paper, we calculate the Hausdorff dimension of the fractal set x𝕋d:1id|Tβin(xi)xi|<ψ(n) for infinitely many n, where Tβi is the standard βi-transformation with βi>1, ψ is a positive function on and || is the usual metric on the torus 𝕋. Moreover, we investigate a modified version of the shrinking target problem, which unifies the shrinking target problems and quantitative recurrence properties for matrix transformations of tori. Let T be a d×d non-singular matrix with real coefficients. Then, T determines a self-map of the d-dimensional torus 𝕋d:=d/d. For any 1id, let ψi be a positive function on and Ψ(n):=(ψ1(n),,ψd(n)) with n. We obtain the Hausdorff dimension of the fractal set {x𝕋d:Tn(x)L(fn(x),Ψ(n)) for infinitely many n}, where L(fn(x,Ψ(n))) is a hyperrectangle and {fn}n1 is a sequence of Lipschitz vector-valued functions on 𝕋d with a uniform Lipschitz constant.



中文翻译:


改进的TORI矩阵变换收缩目标问题



在本文中,我们计算分形集合 x𝕋d:1id|Tβin(xi)xi|<ψ(n) for infinitely many n, 的豪斯多夫维数,其中 Tβi 是标准 βi -与 βi>1 的变换,< b4> 是 上的正函数,而 || 是圆环 𝕋 上的常用度量。此外,我们研究了收缩目标问题的修改版本,它将收缩目标问题和环面矩阵变换的定量递归性质统一起来。令 T 为具有实数系数的 d×d 非奇异矩阵。然后, T 确定 d 维环面 𝕋d:=d/d 的自映射。对于任何 1id ,令 ψiΨ(n):=(ψ1(n),,ψd(n))n 的正函数。我们获得分形集合 {x𝕋d:Tn(x)L(fn(x),Ψ(n)) for infinitely many n}, 的豪斯多夫维数,其中 L(fn(x,Ψ(n))) 是超矩形, {fn}n1𝕋d

更新日期:2024-05-21
down
wechat
bug