Fractals ( IF 3.3 ) Pub Date : 2024-05-10 , DOI: 10.1142/s0218348x23401205 ZONG-GUO ZHANG 1 , SU-LING CHEN 2 , QUAN-SHENG LIU 3
Wave–wave interaction occurs in the propagation deformation of nonlinear long waves in shallow-water. In order to further study the propagation mechanism of shallow-water long waves interaction, the exact traveling wave solutions of the local fractional generalized Hirota–Satsuma coupled Korteweg–de Vries (HS-KdV) equations defined by the Cantor sets are obtained. The non-differentiable solutions with fixed fractal dimension and different propagation velocity are discussed. The results indicate that the exact solutions of the local fractional generalized HS-KdV equations characterize the interaction of fractal long waves with different dispersion relations on shallow-water surfaces.
中文翻译:
长波相互作用中局部分数阶广义HIROTA-SATSUMA耦合KORTEWEG-DE Vries方程的精确行波解
浅水中非线性长波的传播变形中发生波与波的相互作用。为了进一步研究浅水长波相互作用的传播机制,获得了由Cantor集定义的局部分数阶广义Hirota-Satsuma耦合Korteweg-de Vries (HS-KdV)方程的精确行波解。讨论了具有固定分形维数和不同传播速度的不可微解。结果表明,局部分数阶广义HS-KdV方程的精确解表征了浅水表面不同色散关系的分形长波的相互作用。