当前位置: X-MOL 学术Fractals › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
FRACTAL PROPERTIES OF THE GENERALIZED MANDELBROT SET WITH COMPLEX EXPONENT
Fractals ( IF 3.3 ) Pub Date : 2024-05-10 , DOI: 10.1142/s0218348x23401217
SHUAI LIU, XIYU XU, GAUTAM SRIVASTAVA, HARI M. SRIVASTAVA

Mandelbrot set, which was provided as a highlight in fractal and chaos, is studied by many researchers. With the extension of Mandelbrot set to generalized M set with different kinds of exponent k (kM set), properties are hard to understand when k is a complex number. In this paper, fractal property of generalized M set with complex exponent z is studied. First, a relation is constructed between generalized M set with complex and real exponent. Then, distribution of zM set on complex plane is researched. Meanwhile, symmetry of generalized M set is proved. Finally, graphics, generated by escape time algorithm, are the validated results of this paper.



中文翻译:


具有复指数的广义曼德尔布罗特集的分形性质



曼德尔布罗特集是分形和混沌领域的一个亮点,受到许多研究人员的研究。将Mandelbrot集扩展为具有不同类型指数 kkM 集)的广义 M 集,当 k 的广义 M 集的分形性质。首先,在具有复指数和实指数的广义 M 集合之间构造关系。然后研究了 zM 集合在复平面上的分布。同时证明了广义 M 集合的对称性。最后,利用逃逸时间算法生成的图形是本文的验证结果。

更新日期:2024-05-10
down
wechat
bug