Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
固态无机材料化学中的现代微波方法:从基础到制造
Chemical Reviews
(
IF
51.4
)
Pub Date : 2013-11-21 00:00:00
, DOI:
10.1021/cr4002353
Helen J. Kitchen
1
,
Simon R. Vallance
1,
2
,
Jennifer L. Kennedy
1,
3
,
Nuria Tapia-Ruiz
1
,
Lucia Carassiti
1
,
Andrew Harrison
4
,
A. Gavin Whittaker
5
,
Timothy D. Drysdale
3
,
Samuel W. Kingman
2
,
Duncan H. Gregory
1
Affiliation
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, United Kingdom
- Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- School of Engineering, University of Glasgow, James Watt South Building, Glasgow G12 8QQ, United Kingdom
- Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, F 38042, Grenoble, Cedex 9, France
- Tan Delta Microwaves Limited, 7 Nettlingflat, Heriot EH38 5YF, United Kingdom
海伦·厨房(Helen Kitchen)获得了她的化学博士学位。她于2009年获得牛津大学赫特福德学院的博士学位。她目前正在攻读博士学位。在格拉斯哥大学(Duncan H. Gregory)的指导下。她目前的研究专注于原位粉末中子衍射技术的开发,用于固态微波合成(尤其是过渡金属碳化物的合成)的时间分辨研究。
西蒙·瓦朗斯(Simon Vallance)于2007年毕业,获得博士学位。在诺丁汉大学获得邓肯·格雷戈里教授和山姆·金曼教授的博士学位。他的研究专注于微波合成过渡金属碳化物。除了反应机理的研究,碳化物材料的表征和力学测试之外,这还涉及微波反应器的开发和新颖的实验设计。自毕业以来,他曾在Hawkins&Associates担任火灾和爆炸物调查员。
詹妮弗·肯尼迪(Jennifer Kennedy)毕业于格拉斯哥大学,获得理学硕士学位。她于2011年获得化学(荣誉)学位。她留在格拉斯哥大学,目前正在该大学攻读跨学科博士学位。在Timothy D. Drysdale博士和Duncan H. Gregory教授的指导下获得电气工程与化学博士学位。她的研究兴趣集中在开发耐火陶瓷的高能效微波合成以及建立结构与属性之间的关系上。
Nuria Tapia-Ruiz拥有巴塞罗那大学理学学士学位,毕业于巴塞罗那大学。她于2009年获得无机化学(荣誉)学位。然后,她移居格拉斯哥大学,目前正在攻读博士学位。在Duncan H. Gregory教授的指导下获得材料化学博士学位。她的研究兴趣集中在开发合成氮化物的新途径以及将其用作能量存储和转换材料。这项工作包括使用微波技术制备氮化物。
Lucia Carassiti于2007年毕业于罗马的Sapienza大学,获得材料化学硕士学位。随后,她移居格拉斯哥大学,并获得博士学位。在Duncan H. Gregory教授的指导下于2012年获得博士学位。她的研究涉及碳化硅的微波合成及其表征。自毕业以来,她一直在Jaguar Land Rover担任底盘工程师。
安德鲁·哈里森(Andrew Harrison)是格勒诺布尔(世界领先的中子科学中心)Laue-Langevin研究所(ILL)的主任。他从牛津大学获得化学学位(1982年)和博士学位(1986年),开始了他的科学职业生涯,随后在牛津,剑桥和加拿大麦克马斯特大学获得了研究奖学金,然后前往英国皇家学会进行了研究。 1992年加入爱丁堡大学,成为固体化学教授(1999年)。他的主要研究兴趣是模型磁性材料和微波化学,以中子散射为主要实验探针,因此于2006年移至ILL。
加文·惠特克(Gavin Whittaker)就读于牛津大学,获得博士学位。1994年获得Mike Mingos教授的博士学位。他曾是爱丁堡大学的博士后研究员和物理化学讲师,直到2006年。此后,他成立了Tan Delta Microwaves,作为一家微波咨询和设备销售公司,并创立了Miramodus,以生产化学结构模型。他的兴趣涵盖了微波与固态材料的基本相互作用,现在包括微波加热的工业应用。
Timothy D. Drysdale拥有博士学位。新西兰坎特伯雷大学电子与电气工程学士学位(2003年)。他于2004年获得了爱丁堡皇家学会和苏格兰行政个人研究奖学金,并在格拉斯哥大学任教,并于2006年被任命为讲师。他曾在电磁建模,太赫兹技术和数字领域发表论文。成像并拥有微波处理专利。他曾在2006年英国皇家学会夏季科学展览会上展出,并在2012年英国科学节上发表了Isambard Kingdom Brunel奖演讲。
山姆·金曼(Sam Kingman)获得博士学位。1999年获得伯明翰大学化学工程学士学位。2000年,他移居诺丁汉大学担任讲师。2006年,他被任命为诺丁汉的私人主席,这使他成为英国最年轻的教授之一。他是国家工业微波处理中心(NCIMP)的主任,该中心是世界上同类活动中规模最大的活动之一。该中心致力于发展对微波能量与材料相互作用的基本理解,并以此为基础扩大工艺规模。
Duncan H. Gregory就读于南安普敦大学,获得博士学位。1993年在Mark Weller教授的带领下获得博士学位。直到2006年,他一直是诺丁汉大学的EPSRC高级研究员,讲师和材料化学读者。随后,他担任了格拉斯哥大学的无机材料WestCHEM主席,并且是无机化学负责人。他的研究兴趣包括功能材料,结构材料和能源材料,重点是无机固体的可持续合成和加工。图1.(a)常规加热和(b)微波加热的温度曲线差异。该图像显示了通过试管的切片,显示了在(a)水浴和(b)CEM Discover MW系统中加热60 s后的温度梯度。(24)版权所有2003。在获得Springer Science和Business Media的许可后,从参考文献(24)转载。图2. CEM Discover单模MW反应堆。(38)在Springer Science和Business Media的允许下,从参考文献38转载。图3. CEM MARS多模兆瓦反应堆。版权所有2003。在获得Springer Science和Business Media的许可后,从参考文献38转载。图4. Milestone Flowsynth连续流MW反应器。(42)在参考文献42的许可下转载。版权所有2008 American Chemical Society。图5. MIP反应器示意图。虚线框中显示的设备部分可以隔离开来,以便对空气敏感的产品和前体进行处理。(46)在参考文献46的许可下转载。版权所有2004 AIP Publishing LLC。图6.常规TiO的MW吸收特性 CEM发现单模MW反应堆。(38)在获得Springer Science和Business Media的许可后,从参考文献38转载。图3. CEM MARS多模兆瓦反应堆。版权所有2003。在获得Springer Science和Business Media的许可后,从参考文献38转载。图4. Milestone Flowsynth连续流MW反应器。(42)在参考文献42的许可下转载。版权所有2008 American Chemical Society。图5. MIP反应器示意图。虚线框中显示的设备部分可以隔离开来,以便对空气敏感的产品和前体进行处理。(46)在参考文献46的许可下转载。版权所有2004 AIP Publishing LLC。图6.常规TiO的MW吸收特性 CEM发现单模兆瓦反应堆。(38)在获得Springer Science和Business Media的许可后,从参考文献38转载。图3. CEM MARS多模兆瓦反应堆。版权所有2003。经Springer Science和Business Media的许可,由参考文献38转载。图4. Milestone Flowsynth连续流MW反应器。(42)在参考文献42的许可下转载。版权所有2008 American Chemical Society。图5. MIP反应器示意图。虚线框中显示的设备部分可以隔离开来,以便对空气敏感的产品和前体进行处理。(46)在参考文献46的许可下转载。版权所有2004 AIP Publishing LLC。图6.常规TiO的MW吸收特性 版权所有2003。在获得Springer Science和Business Media的许可后,从参考文献38转载。图4. Milestone Flowsynth连续流MW反应器。(42)在参考文献42的许可下转载。版权所有2008 American Chemical Society。图5. MIP反应器示意图。虚线框中显示的设备部分可以隔离开来,以便对空气敏感的产品和前体进行处理。(46)在参考文献46的许可下转载。版权所有2004 AIP Publishing LLC。图6.常规TiO的MW吸收特性 版权所有2003。在获得Springer Science和Business Media的许可后,从参考文献38转载。图4. Milestone Flowsynth连续流MW反应器。(42)在参考文献42的许可下转载。版权所有2008 American Chemical Society。图5. MIP反应器示意图。虚线框中显示的设备部分可以隔离开来,以便对空气敏感的产品和前体进行处理。(46)在参考文献46的许可下转载。版权所有2004 AIP Publishing LLC。图6.常规TiO的MW吸收特性 虚线框中显示的设备部分可以隔离开来,以便对空气敏感的产品和前体进行处理。(46)在参考文献46的许可下转载。版权所有2004 AIP Publishing LLC。图6.常规TiO的MW吸收特性 虚线框中显示的设备部分可以隔离开来,以便对空气敏感的产品和前体进行处理。(46)在参考文献46的许可下转载。版权所有2004 AIP Publishing LLC。图6.常规TiO的MW吸收特性2(在空气中)和还原的TiO 2– x(在N 2中)(59)未经参考59许可转载。版权所有2004,美国陶瓷学会。改编自参考文献70。2010年,英国皇家化学学会版权所有。图7.(a)在680和780°C下使用混合MW加热烧结的“亚微米”氧化锌和(b)在780和900°C下烧结的“微米”氧化锌混合剂的最终密度曲线。(76)经许可转载摘自参考文献76。2006年,美国陶瓷学会版权所有。图8. MW和由MW辅助的合成钙钛矿镧的合成路线示意图。(78)未经参考78许可转载。版权所有2011 Elsevier。图9.在聚乙烯吡咯烷酮(PVP)存在下合成的CdSe多脚架的代表性TEM图像。(93)经参考文献93许可转载。版权所有2009 Elsevier。图10。2 Te 3。(102)未经参考102许可转载。版权所有2011工程技术学院。图11.与计算的模式相比,使用不同的样品量选择MW反应制备AgInSe 2所获得的PXD模式。将所有三个样品研磨20分钟,然后以三个1分钟的间隔照射。由于AgIn 5 Se 8的存在,星号标记衍射峰。(103)经ref 103许可转载。版权所有2007 Elsevier。图12. WC–Co。(154)烧结中使用的SMC示意图。在参考文献154的许可下转载。版权所有1997 Springer Science和Business Media。图13.连续进行MW陶瓷烧结的设备,该陶瓷最长1 m长,直径10 cm。(154)经参考154许可转载。版权所有1997 Springer Science and Business Media。图14.(a)在3 kW SMC中,W + C反应的损耗角正切和反应温度与反应时间的关系;(b)3 kW SMC中W + C反应的损耗角正切值和WC相分数与反应时间的关系(趋势线仅作为参考)。(151)经参考151许可转载。版权所有2012 The Royal化学学会。图15。(a)在SMC反应器中通过3 kW辐照20 s合成的SiC的PXD图和(b)SEM显微照片。(129)在参考129的允许下转载。版权所有2011皇家化学学会。图16.在MMC中由Si + C制备的SiC的SEM显微照片:(a)纳米颗粒簇和(b)纳米纤维。(129)经参考129许可转载。版权所有2011皇家化学学会。图17. Yang等人使用的反应设置。(161)在参考文献161的允许下转载。版权所有2008 IOP Publishing。图18. Jokisaari等人(158)使用的MACS系统示意图,经参考158许可转载自。版权所有2005 Elsevier。图19.在(a)10,(b)60和(c)120分钟的氮等离子体暴露时间下获得的典型GaN反应产物。(183)经参考183许可转载。版权所有2008 Elsevier。图20.图19c。(183)中所示的形成的GaN材料的SEM图。在获得参考文献183的许可下转载。版权所有2008 Elsevier。图21.反应期间通过DMO门获取的热图像7.反应区(橙红色光)用箭头标记,反应瓶的轮廓以白色添加。红色,橙色和黄色区域表示反应容器中最热的区域,而绿色和蓝色区域表示较凉的区域。(187)在参考文献187的允许下转载。版权所有2006皇家化学学会。图22. MW-CRAC反应器示意图。(138)经参考138许可转载。版权所有2009 Elsevier。图23.用于现场实验室PXD的MW喷头:(a)附着在衍射仪上的施药器,以及(b)施药器的示意图。(201)在参考文献201的允许下转载。版权所有2002皇家化学学会。图24.在(a)MW加热条件下,AgI在整个β-α相变过程中的衍射峰演化,T c = 380±10 K,并且(b)常规加热,T c= 412±2 K.(201)经参考201许可转载。版权所有2002皇家化学会。图25.(a)130°C下90分钟的硅沸石形成的SAXS模式,以及(b)三个反应温度:88、117和130°C时硅沸石粒度随时间变化的曲线图。(202)经许可转载参考编号202。版权所有2006 AIP Publishing LLC。图26. MW合成SIZ-4的EDXRD数据的3D图显示了最终产物的直接形成,具有极好的结晶度。(204)经参考204许可转载。版权所有2009美国化学学会。图27.原位同步加速器PXD数据显示了导致形成单相ψ-(Al-Cu-Fe)准晶体[上三角β-Fe(Al);向下三角形θ-Al系2的Cu; 钻石ω-Al系7铜2铁 (205)转载自参考文献205。版权所有2008材料研究学会图28.在ISIS的LOQ仪器上用于原位SANS的MW反应堆的照片和示意图。(207)引用207的许可。版权所有2001 AIP Publishing LLC。图29.在ISIS设施的SXD中子衍射仪上进行原位单晶衍射的样品排列和MW施加器的示意图(左)以及样品的钒板之间的电场(右)。(208)经参考208许可转载。版权所有2003,皇家化学学会。图30.设计用于ISIS设施在HRPD进行原位粉末中子衍射的MW装置的示意图。(208)将样品和热电偶安装在谐振微波腔中,连接到微波源,该微波源的输出受到控制以保持设定的温度。经参考208许可转载。版权所有2003,皇家化学学会。图31.阿司匹林的结构,显示了在不同温度和不同热源下的ADP:(i)传统加热方式为100 K,(ii)MW加热方式为100 K,(iii)传统加热方式为300K。(208)重印并获得编号208的许可。皇家化学学会2003年版权所有。图32.在D2B仪器ILL上使用MW和替代热源进行的现场PND研究的实验装置示意图。(210)经参考书目210许可转载。版权所有2005 WILEY-VCH Verlag GmbH&Co. KGaA。图33.硅沸石的MW合成过程中获得的原位拉曼光谱,其中反应温度保持在115°C。(202)经ref 202许可转载。版权所有2006 AIP Publishing LLC。图34. MW加热下EUROPT-1催化剂上CO氧化的时间分辨IR光谱。(227)经参考227许可转载。版权所有2006皇家化学学会。快速,均匀的能量传递,定量和选择性加热,环境兼容性,增加的生产量,快速的开关操作,节省空间的紧凑型设备,使用时提高清洁环境的安全性以及产品的独特特性。确保均匀的电场分布,优化的反应堆设计,其中要考虑穿透深度,反应堆内温度和压力的控制,反应堆和备件的成本以及安全问题和MW泄漏。图35。由Abramovitch等人(233)使用的用于处理被有毒金属离子污染的土壤的MW装置,在参考文献233的允许下转载。版权所有2003 Elsevier。图36. Terigar等人(243)描述的实验室规模(上)和中试规模(下)连续MW辅助萃取系统的示意图,在参考文献243的许可下转载。版权所有2011 Elsevier。图37.(a)SMC实验的仪器示意图,如Al-Harahsheh等人所述。(b)沿SMC的水平和垂直轴截取的功率密度图。(244)经参考244许可转载自。版权所有2006 Elsevier。图38.电磁模拟显示空腔宽度对MW施加器内功率密度分布的影响。(245)经参考245许可转载。版权所有2010 Elsevier。图39.用于连续处理受污染的钻屑的中试规模设备的示意图。(245)经参考245许可转载。版权所有2010 Elsevier。图40.中试规模的5 kW MW无菌食品加工系统的示意图。(248)经参考248许可转载。版权所有2008 Elsevier。图41.在5 kW MW系统中处理胡萝卜泥时,涂抹器不同区域的温度曲线。(248)经参考248许可转载。版权所有2008 Elsevier。图42. Kumar等人(248)使用的MW(60 kW)连续流系统,在参考文献248的许可下转载。版权所有2008 Elsevier。取自出口处涂药器管的中心和壁之间。取自出口处涂药器管的中心和壁之间。作者宣称没有竞争性的经济利益。DHG感谢STFC为HJK提供的学生奖学金,ScotCHEM为NTR提供的学生奖学金以及格拉斯哥大学/ GRPE大学的LC提供的学生奖学金。DHG和SWK感谢诺丁汉大学为SRVDHG提供的学生奖学金,而TDD感谢格拉斯哥大学为JLK提供的学生奖学金。本文引用了260种其他出版物。
"点击查看英文标题和摘要"
Modern Microwave Methods in Solid-State Inorganic Materials Chemistry: From Fundamentals to Manufacturing
Helen Kitchen received her M.Chem. degree from Hertford College, University of Oxford, in 2009. She is currently undertaking a Ph.D. at the University of Glasgow, under the supervision of Professor Duncan H. Gregory. Her current research is focused on development of in-situ powder neutron diffraction techniques for time-resolved study of solid-state microwave synthesis, particularly synthesis of transition metal carbides.
Simon Vallance graduated in 2007 with his Ph.D. degree at the University of Nottingham under Professor Duncan Gregory and Professor Sam Kingman. His research was focused on microwave synthesis of transition metal carbides. This involved development of microwave reactors and novel experimental design in addition to mechanistic study of reactions and characterization and mechanical testing of carbide materials. Since graduating he has worked as a fire and explosions investigator at Hawkins & Associates.
Jennifer Kennedy graduated from the University of Glasgow with her M.Sci. degree (Hons) in Chemistry in 2011. She remained at the University of Glasgow, where she is currently studying for an interdisciplinary Ph.D. degree between Electrical Engineering and Chemistry under the supervision of Dr. Timothy D. Drysdale and Professor Duncan H. Gregory. Her research interests center on developing energy-efficient microwave syntheses of refractory ceramics and establishing structure–property relationships.
Nuria Tapia-Ruiz graduated from the University of Barcelona with her B.Sc. degree (Hons) in Inorganic Chemistry in 2009. She then moved to the University of Glasgow, where she is currently studying for her Ph.D. degree in Materials Chemistry under the supervision of Professor Duncan H. Gregory. Her research interests center on developing new routes for synthesis of nitrides with applications as energy storage and conversion materials. This work includes preparation of nitrides using microwave techniques.
Lucia Carassiti graduated from the Sapienza University of Rome with her M.Sc.degree in the Chemistry of Materials in 2007. She then moved to the University of Glasgow, where she graduated with her Ph.D. degree in 2012 under the supervision of Professor Duncan H. Gregory. Her research involved microwave synthesis of silicon carbide and its characterization. Since graduating she has worked for Jaguar Land Rover as a Chassis Engineer.
Andrew Harrison is Director of the Institut Laue-Langevin (ILL) in Grenoble, the world’s leading center for neutron science. He started his career in science with a degree (1982) and doctorate (1986) in chemistry from the University of Oxford, followed by research fellowships taken in Oxford, Cambridge, and McMaster University, Canada, and then went with a U.K. Royal Society Research Fellowship to the University of Edinburgh (1992), where he rose to become Professor of Solid-State Chemistry (1999). His main research interests are model magnetic materials and microwave chemistry, with neutron scattering as the primary experimental probe, hence the move to the ILL in 2006.
Gavin Whittaker studied at the University of Oxford, completing his Ph.D. degree in 1994 under Professor Mike Mingos. He was a Postdoctoral researcher and then Lecturer in Physical Chemistry at the University of Edinburgh until 2006. Thereafter, he set up Tan Delta Microwaves as a microwave consultancy and equipment sales company and Miramodus producing chemical structure models. His interests covered fundamental microwave interactions with solid-state materials and now include industrial applications of microwave heating.
Timothy D. Drysdale graduated with his Ph.D. degree (2003) in Electronics and Electrical Engineering from the University of Canterbury, New Zealand. He was awarded a Royal Society of Edinburgh & Scottish Executive Personal Research Fellowship in 2004, which he took at the University of Glasgow, and was appointed as a lecturer in 2006. He has published in the fields of electromagnetic modeling, terahertz technology, and digital imaging and holds a patent in microwave processing. He exhibited at the Royal Society Summer Science Exhibition 2006 and gave the Isambard Kingdom Brunel Award Lecture at the British Science Festival 2012.
Sam Kingman obtained his Ph.D. degree in Chemical Engineering at the University of Birmingham in 1999. In 2000 he moved to the University of Nottingham to take up a lectureship. He was awarded a personal chair at Nottingham in 2006, which at the time made him one of the youngest professors in the United Kingdom. He is Director of the National Centre for Industrial Microwave Processing (NCIMP), which is one of the largest activities of its type in the world. The center is focused upon development of a fundamental understanding of the interaction of microwave energy with materials and use of this understanding to underpin process scale up.
Duncan H. Gregory studied at the University of Southampton, completing his Ph.D. degree in 1993 under Professor Mark Weller. He was an EPSRC Advanced Fellow, Lecturer, and Reader in Materials Chemistry at the University of Nottingham until 2006. He then took up the WestCHEM Chair in Inorganic Materials at the University of Glasgow and is Head of Inorganic Chemistry. His research interests encompass functional, structural, and energy materials with a focus on sustainable synthesis and processing of inorganic solids. Figure 1. Difference in the temperature profile of (a) conventional and (b) microwave heating. The image shows a slice through a tube showing temperature gradients after 60 s of heating in (a) a water bath and (b) an CEM Discover MW system.(24) Copyright 2003. Reprinted from ref (24) with kind permission from Springer Science and Business Media. Figure 2. CEM Discover single-mode MW reactor.(38) Reprinted from ref 38 with kind permission from Springer Science and Business Media. Figure 3. CEM MARS multimode MW reactor. Copyright 2003. Reprinted from ref 38 with kind permission from Springer Science and Business Media. Figure 4. Milestone Flowsynth continuous-flow MW reactor.(42) Reprinted with permission from ref 42. Copyright 2008 American Chemical Society. Figure 5. Schematic of an MIP reactor. The portion of the apparatus shown in the dotted box can be isolated to allow manipulation of air-sensitive products and precursors.(46) Reprinted with permission from ref 46. Copyright 2004 AIP Publishing LLC. Figure 6. MW absorption characteristics of regular TiO2 (in air) and reduced TiO2–x (in N2 atmosphere).(59) Reprinted with permission from ref 59. Copyright 2004 The American Ceramic Society. Adapted with permission from ref 70. Copyright 2010 The Royal Society of Chemistry. Figure 7. Final density curves of (a) “submicrometer” zinc oxide sintered using hybrid MW heating at 680 and 780 °C and (b) “micrometer” zinc oxide hybrid sintered at 780 and 900 °C.(76) Reprinted with permission from ref 76. Copyright 2006 The American Ceramic Society. Figure 8. Schematic of MW and MW-assisted synthetic routes to lanthanum perovskites.(78) Reprinted with permission from ref 78. Copyright 2011 Elsevier. Figure 9. Representative TEM images of CdSe multipods synthesized in the presence of polyvinylpyrrolidone (PVP).(93) Reprinted with permission from ref 93. Copyright 2009 Elsevier. Figure 10. Schematic diagram of the apparatus used for synthesis of Sb2Te3.(102) Reprinted with permission from ref 102. Copyright 2011 The Institution of Engineering and Technology. Figure 11. PXD patterns obtained for select MW reactions to prepare AgInSe2 using different sample volumes as compared to the calculated pattern. All three samples were ground for 20 min followed by irradiation for three 1 min intervals. Asterisks mark diffraction peaks due to the presence of AgIn5Se8.(103) Reprinted with permission from ref 103. Copyright 2007 Elsevier. Figure 12. Schematic of the SMC used in the sintering of WC–Co.(154) Reprinted with permission from ref 154. Copyright 1997 Springer Science and Business Media. Figure 13. Apparatus for continuous MW sintering of ceramics up to 1 m long and 10 cm in diameter.(154) Reprinted with permission from ref 154. Copyright 1997 Springer Science and Business Media. Figure 14. (a) Loss tangent and reaction temperature versus reaction time for reaction of W + C in the 3 kW SMC; (b) loss tangent and WC phase fraction versus reaction time for reaction of W + C in the 3 kW SMC (trend lines serve only as a guide to the eye).(151) Reprinted with permission from ref 151. Copyright 2012 The Royal Society of Chemistry. Figure 15. (a) PXD pattern and (b) SEM micrograph of SiC synthesized in a SMC reactor by irradiation at 3 kW for 20 s.(129) Reprinted with permission from ref 129. Copyright 2011 The Royal Society of Chemistry. Figure 16. SEM micrographs of SiC prepared from Si + C in a MMC: (a) nanoparticle clusters and (b) nanofibers.(129) Reprinted with permission from ref 129. Copyright 2011 The Royal Society of Chemistry. Figure 17. Reaction setup used by Yang et al. in the synthesis of pure and Cu-doped CaAlSi superconductors.(161) Reprinted with permission from ref 161. Copyright 2008 IOP Publishing. Figure 18. Schematic of the MACS system utilized by Jokisaari et al.(158) Reprinted from with permission from ref 158. Copyright 2005 Elsevier. Figure 19. Typical GaN reaction products obtained at nitrogen plasma exposure times of (a) 10, (b) 60, and (c) 120 min.(183) Reprinted with permission from ref 183. Copyright 2008 Elsevier. Figure 20. SEM image of the as-formed GaN material shown in Figure 19c.(183) Reprinted with permission from ref 183. Copyright 2008 Elsevier. Figure 21. Thermal image taken through the door of the DMO during reaction 7. Reaction zones (orange-red light) are marked with arrows, and the outline of the reaction vial is added in white. Red, orange, and yellow areas correspond to the hottest areas in the reaction vessel, whereas green and blue regions represent cooler areas.(187) Reprinted with permission from ref 187. Copyright 2006 The Royal Society of Chemistry. Figure 22. Schematic of the MW-CRAC reactor.(138) Reprinted with permission from ref 138. Copyright 2009 Elsevier. Figure 23. MW applicator for in-situ laboratory PXD: (a) applicator attached to the diffractometer and (b) schematic of applicator.(201) Reprinted with permission from ref 201. Copyright 2002 The Royal Society of Chemistry. Figure 24. Diffraction peak evolution of AgI across the β–α phase transition with (a) MW heating, Tc = 380 ± 10 K, and (b) conventional heating, Tc = 412 ± 2 K.(201) Reprinted with permission from ref 201. Copyright 2002 The Royal Society of Chemistry. Figure 25. (a) SAXS patterns of silicalite formation at 130 °C for 90 min, and (b) plot of silicalite particle sizes with time for three reaction temperatures: 88, 117, and 130 °C.(202) Reprinted with permission from ref 202. Copyright 2006 AIP Publishing LLC. Figure 26. 3D plot of EDXRD data for MW synthesis of SIZ-4 showing direct formation of the final product with excellent crystallinity.(204) Reprinted with permission from ref 204. Copyright 2009 American Chemical Society. Figure 27. In-situ synchrotron PXD data showing the sequence of solid-state transitions leading to formation of single-phase ψ-(Al–Cu–Fe) quasicrystals [up triangles β-Fe(Al); down triangles θ-Al2Cu; diamonds ω-Al7Cu2Fe; open circles ψ-phase).(205) Reprinted with permission from ref 205. Copyright 2008 Materials Research Society Figure 28. Photograph and schematic of the MW reactor used for in-situ SANS on the LOQ instrument at ISIS.(207) Reprinted with permission from ref 207. Copyright 2001 AIP Publishing LLC. Figure 29. Schematic of the sample arrangement and MW applicator (left) and of the electric field between the vanadium plates at the sample (right) for in-situ single-crystal diffraction at the SXD neutron diffractometer at the ISIS Facility.(208) Reprinted with permission from ref 208. Copyright 2003 The Royal Society of Chemistry. Figure 30. Schematic of the MW apparatus designed for in-situ powder neutron diffraction at HRPD at the ISIS Facility.(208) Sample and thermocouple are mounted in a resonant microwave cavity, connected to a microwave source whose output was controlled to maintain a set temperature. Reprinted with permission from ref 208. Copyright 2003 The Royal Society of Chemistry. Figure 31. Structure of aspirin, showing ADPs at various temperatures and with different sources of heat: (i) 100 K with conventional heating,(ii) 100 K with MW heating, (iii) 300 K with conventional heating.(208) Reprinted with permission from ref 208. Copyright 2003 The Royal Society of Chemistry. Figure 32. Schematic of the experimental setup for in-situ PND studies at the D2B instrument, ILL, using MW and alternative heating sources.(210) Reprinted with permission from ref 210. Copyright 2005 WILEY-VCH Verlag GmbH & Co. KGaA. Figure 33. In-situ Raman spectra taken during MW synthesis of silicalite, in which the reaction temperature was maintained at 115 °C.(202) Reprinted with permission from ref 202. Copyright 2006 AIP Publishing LLC. Figure 34. Time-resolved IR spectra of CO oxidation over the EUROPT-1 catalyst under MW heating.(227) Reprinted with permission from ref 227. Copyright 2006 The Royal Society of Chemistry. rapid and uniform energy transfer, volumetric and selective heating, environmental compatibility, increased throughput, fast on and off switching, compact equipment–space savings, clean environment at the point of use-enhanced worker safety, and unique characteristics of the products. ensuring a homogeneous electric field profile, optimum reactor design which takes into account penetration depths, control of temperature and pressure within the reactor, cost of the reactor and spare parts, and safety issues and MW leakage. Figure 35. MW setup for treatment of soils contaminated with toxic metal ions employed by Abramovitch et al.(233) Reprinted with permission from ref 233. Copyright 2003 Elsevier. Figure 36. Schematic representation of the laboratory-scale (top) and pilot-scale (bottom) continuous MW-assisted extraction systems described by Terigar et al.(243) Reprinted with permission from ref 243. Copyright 2011 Elsevier. Figure 37. (a) Schematic of the instrumentation for SMC experiments as described by Al-Harahsheh et al. (b) Power density maps taken along the horizontal and vertical axis of the SMC.(244) Reprinted from with permission from ref 244. Copyright 2006 Elsevier. Figure 38. Electromagnetic simulations showing the effect of cavity width on power density distribution within the MW applicator.(245) Reprinted with permission from ref 245. Copyright 2010 Elsevier. Figure 39. Schematic of the pilot-scale apparatus for continuous treatment of contaminated drill cuttings.(245) Reprinted with permission from ref 245. Copyright 2010 Elsevier. Figure 40. Schematic representation of the pilot-scale 5 kW MW aseptic food-processing system.(248) Reprinted with permission from ref 248. Copyright 2008 Elsevier. Figure 41. Temperature profile across different regions of the applicator during processing of carrot puree in a 5 kW MW system.(248) Reprinted with permission from ref 248. Copyright 2008 Elsevier. Figure 42. MW (60 kW) continuous-flow system used by Kumar et al.(248) Reprinted with permission from ref 248. Copyright 2008 Elsevier. Taken between the center and the wall of the applicator tube at the outlet. Taken between the center and the wall of the applicator tube at the outlet. The authors declare no competing financial interest. D.H.G. thanks the STFC for a studentship for H.J.K, ScotCHEM for a studentship for N.T.R and the University of Glasgow/GRPE for a studentship for LC. D.H.G. and S.W.K. thank the University of Nottingham for a studentship for S.R.V. D.H.G. and T.D.D. thank the University of Glasgow for a studentship for J.L.K. This article references 260 other publications.
更新日期:2013-11-21