当前位置:
X-MOL 学术
›
Int. J. Eng. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Modeling and experimental analysis of piezoresistive behavior in conductive porous elastomer under significantly large deformation
International Journal of Engineering Science ( IF 5.7 ) Pub Date : 2024-05-25 , DOI: 10.1016/j.ijengsci.2024.104091 Jianpeng Zhang , Song Wei , Chao Shang , Yu Duan , Zhaoqiang He , Hua An , Xinge Yu , Zhengchun Peng
International Journal of Engineering Science ( IF 5.7 ) Pub Date : 2024-05-25 , DOI: 10.1016/j.ijengsci.2024.104091 Jianpeng Zhang , Song Wei , Chao Shang , Yu Duan , Zhaoqiang He , Hua An , Xinge Yu , Zhengchun Peng
Piezoresistive porous elastomers () are gaining attention in the field of flexible electronics due to their unique properties including ultra softness, ultra lightness, and high sensitivity. These properties can be precisely adjusted through advanced material synthesis and micro/nanofabrication technologies that control the size, shape, and composition of the functional nanoparticles. Despite various theoretical models of porous materials developed to advance the design of these materials, issues such as reverse piezoresistive response and resistance overshooting remains to be unsolved. Using principles of elastic mechanics and electrical tunnel effects, the present study introduces an analytical model that considers the effects of multimodal buckling of the pore wall, pore closure, microcracks, and mismatch within the pore wall under large deformation. The proposed model achieves a 99.5 % accuracy rate in describing the piezoresistive response (stress and resistance) under 75 % compression deformation by incorporating electrical tunnel theory into the mechanical model. The study also uncovers the mechanism behind high resistance overshooting and its relevant influences, including factors such as loading speed and application temperature. These findings are expected to drive the development of better porous composites and pave the way for practical applications of PPEs in various fields of smart sensors.
中文翻译:
显着大变形下导电多孔弹性体压阻行为的建模和实验分析
压阻式多孔弹性体因其超柔软、超轻和高灵敏度等独特性能而在柔性电子领域受到关注。这些特性可以通过先进的材料合成和控制功能纳米粒子的尺寸、形状和成分的微/纳米制造技术来精确调整。尽管开发了各种多孔材料理论模型来推进这些材料的设计,但反向压阻响应和电阻超调等问题仍未解决。本研究利用弹性力学和电隧道效应原理,引入了一种分析模型,该模型考虑了大变形下孔壁多模态屈曲、孔隙闭合、微裂纹和孔壁失配的影响。通过将电隧道理论融入到机械模型中,该模型在描述 75% 压缩变形下的压阻响应(应力和电阻)方面达到了 99.5% 的准确率。该研究还揭示了高电阻过冲背后的机制及其相关影响,包括加载速度和应用温度等因素。这些发现有望推动更好的多孔复合材料的开发,并为个人防护装备在智能传感器各个领域的实际应用铺平道路。
更新日期:2024-05-25
中文翻译:
显着大变形下导电多孔弹性体压阻行为的建模和实验分析
压阻式多孔弹性体因其超柔软、超轻和高灵敏度等独特性能而在柔性电子领域受到关注。这些特性可以通过先进的材料合成和控制功能纳米粒子的尺寸、形状和成分的微/纳米制造技术来精确调整。尽管开发了各种多孔材料理论模型来推进这些材料的设计,但反向压阻响应和电阻超调等问题仍未解决。本研究利用弹性力学和电隧道效应原理,引入了一种分析模型,该模型考虑了大变形下孔壁多模态屈曲、孔隙闭合、微裂纹和孔壁失配的影响。通过将电隧道理论融入到机械模型中,该模型在描述 75% 压缩变形下的压阻响应(应力和电阻)方面达到了 99.5% 的准确率。该研究还揭示了高电阻过冲背后的机制及其相关影响,包括加载速度和应用温度等因素。这些发现有望推动更好的多孔复合材料的开发,并为个人防护装备在智能传感器各个领域的实际应用铺平道路。