当前位置: X-MOL 学术J. Comput. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effective prediction of SnO2 conduction band edge potential: The key role of surface oxygen vacancies
Journal of Computational Chemistry ( IF 3.4 ) Pub Date : 2024-05-25 , DOI: 10.1002/jcc.27434
Gennaro Vincenzo Sannino 1 , Adriana Pecoraro 2 , Paola Delli Veneri 3 , Michele Pavone 1 , Ana Belén Muñoz-García 2
Affiliation  

Several theoretical studies at different levels of theory have attempted to calculate the absolute position of the SnO2 conduction band, whose knowledge is key for its effective application in optoelectronic devices such us, for example, perovskite solar cells. However, the predicted band edges fall outside the experimentally measured range. In this work, we introduce a computational scheme designed to calculate the conduction band minimum values of SnO2, yielding results aligned with experiments. Our analysis points out the fundamental role of encompassing surface oxygen vacancies to properly describe the electronic profile of this material. We explore the impact of both bridge and in-plane oxygen vacancy defects on the structural and electronic properties of SnO2, explaining from an atomistic perspective the experimental observables. The results underscore the importance of simulating both types of defects to accurately predict SnO2 features and provide new fundamental insights that can guide future studies concerning design and optimization of SnO2-based materials and functional interfaces.

中文翻译:


SnO2导带​​边缘电位的有效预测:表面氧空位的关键作用



不同理论层次的一些理论研究试图计算SnO 2导带的绝对位置,其知识是其在光电器件(例如钙钛矿太阳能电池)中有效应用的关键。然而,预测的能带边缘超出了实验测量的范围。在这项工作中,我们引入了一种计算方案,旨在计算 SnO 2的导带最小值,产生与实验一致的结果。我们的分析指出了包围表面氧空位对于正确描述该材料的电子分布的基本作用。我们探讨了桥接和面内氧空位缺陷对 SnO 2结构和电子性质的影响,从原子角度解释了实验观察结果。结果强调了模拟两种类型的缺陷以准确预测 SnO 2特征的重要性,并提供新的基本见解,可以指导有关 SnO 2基材料和功能界面的设计和优化的未来研究。
更新日期:2024-05-25
down
wechat
bug