当前位置:
X-MOL 学术
›
IMA J. Numer. Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Discrete anisotropic curve shortening flow in higher codimension
IMA Journal of Numerical Analysis ( IF 2.3 ) Pub Date : 2024-05-24 , DOI: 10.1093/imanum/drae015 Klaus Deckelnick 1, 2 , Robert Nürnberg 3
IMA Journal of Numerical Analysis ( IF 2.3 ) Pub Date : 2024-05-24 , DOI: 10.1093/imanum/drae015 Klaus Deckelnick 1, 2 , Robert Nürnberg 3
Affiliation
We introduce a novel formulation for the evolution of parametric curves by anisotropic curve shortening flow in ${{\mathbb{R}}}^{d}$, $d\geq 2$. The reformulation hinges on a suitable manipulation of the parameterization’s tangential velocity, leading to a strictly parabolic differential equation. Moreover, the derived equation is in divergence form, giving rise to a natural variational numerical method. For a fully discrete finite element approximation based on piecewise linear elements we prove optimal error estimates. Numerical simulations confirm the theoretical results and demonstrate the practicality of the method.
中文翻译:
离散各向异性曲线在更高维数下缩短流动
我们通过 ${{\mathbb{R}}}^{d}$, $d\geq 2$ 中的各向异性曲线缩短流引入了参数曲线演化的新颖公式。重构取决于对参数化切向速度的适当操纵,从而产生严格的抛物线微分方程。此外,导出的方程是发散形式,从而产生了自然变分数值方法。对于基于分段线性元素的完全离散有限元近似,我们证明了最佳误差估计。数值模拟证实了理论结果并证明了该方法的实用性。
更新日期:2024-05-24
中文翻译:
离散各向异性曲线在更高维数下缩短流动
我们通过 ${{\mathbb{R}}}^{d}$, $d\geq 2$ 中的各向异性曲线缩短流引入了参数曲线演化的新颖公式。重构取决于对参数化切向速度的适当操纵,从而产生严格的抛物线微分方程。此外,导出的方程是发散形式,从而产生了自然变分数值方法。对于基于分段线性元素的完全离散有限元近似,我们证明了最佳误差估计。数值模拟证实了理论结果并证明了该方法的实用性。