当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Remarkably enhanced acidic photoelectrochemical glycerol oxidation achieving the theoretical maximum photocurrent of BiVO4 through anion modulation
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2024-05-21 , DOI: 10.1016/j.cej.2024.152461
Jun-Yuan Cui , Tian-Tian Li , Zhao-Hua Yin , Long Chen , Jian-Jun Wang

Converting biomass waste into valuable chemicals, while concurrently producing H2 via photoelectrochemical (PEC) water splitting, offers a compelling solution to energy and environmental issues, with a substantial challenge to boost the output of these high-value chemicals and H2. Herein, we report an anion modulation strategy to significantly increase the photocurrent of BiVO4 photoanodes, enabling the efficient oxidation of glycerol, alongside the hydrogen production. We find that NO3, with its lesser affinity for BiVO4 compared to SO42−, allows for the exposure of more active bismuth sites for the oxidation of glycerol, while accelerating the reaction kinetics. The BiVO4 photoanode, in the HNO3 electrolyte, attains an unprecedented photocurrent density of 7.52 mA cm−2 at 1.23 VRHE, surpassing existing records for PEC glycerol oxidation and maintaining stability for over 10 h. The versatility of the anion modulation approach can be extended to a wide array of alcohols, promoting the upcycling of bio-waste into valuable chemical products and fuels like H2.

中文翻译:


显著增强的酸性光电化学甘油氧化,通过阴离子调制达到 BiVO4 的理论最大光电流



将生物质废弃物转化为有价值的化学品,同时通过光电化学 (PEC) 水分解生产 H2,为能源和环境问题提供了令人信服的解决方案,但提高这些高价值化学品和 H2 的产量是一项重大挑战。在此,我们报道了一种阴离子调节策略,可显着增加 BiVO4 光阳极的光电流,从而能够有效氧化甘油,同时产生氢气。我们发现,与 SO42− 相比,NO3− 对 BiVO4 的亲和力较低,允许暴露更活跃的铋位点以氧化甘油,同时加速反应动力学。HNO3 电解质中的 BiVO4 光阳极在 1.23 VRHE 下达到前所未有的 7.52 mA cm-2 光电流密度,超过了 PEC 甘油氧化的现有记录,并保持稳定性超过 10 小时。阴离子调节方法的多功能性可以扩展到多种醇类,促进生物废物升级回收为有价值的化学产品和燃料,如 H2。
更新日期:2024-05-21
down
wechat
bug