当前位置:
X-MOL 学术
›
Random Matrices Theory Appl.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Eigenvalue distributions of high-dimensional matrix processes driven by fractional Brownian motion
Random Matrices: Theory and Applications ( IF 0.9 ) Pub Date : 2024-05-20 , DOI: 10.1142/s2010326324500096 Jian Song 1, 2, 3 , Jianfeng Yao 1, 2, 3 , Wangjun Yuan 1, 2, 3
中文翻译:
分数布朗运动驱动的高维矩阵过程的特征值分布
更新日期:2024-05-24
Random Matrices: Theory and Applications ( IF 0.9 ) Pub Date : 2024-05-20 , DOI: 10.1142/s2010326324500096 Jian Song 1, 2, 3 , Jianfeng Yao 1, 2, 3 , Wangjun Yuan 1, 2, 3
Affiliation
In this paper, we study high-dimensional behavior of empirical spectral distributions for a class of symmetric/Hermitian random matrices, whose entries are generated from the solution of stochastic differential equation driven by fractional Brownian motion with Hurst parameter . For Wigner-type matrices, we obtain almost sure relative compactness of in following the approach in [1]; for Wishart-type matrices, we obtain tightness of on by tightness criterions provided in Appendix B. The limit of as is also characterized.
中文翻译:
分数布朗运动驱动的高维矩阵过程的特征值分布
在本文中,我们研究了一类 对称/厄米特随机矩阵的经验谱分布 的高维行为,其条目是由随机微分方程驱动的解生成的通过具有 Hurst 参数 的分数布朗运动。对于维格纳型矩阵,按照[1]中的方法,我们在 中获得了几乎确定的 的相对紧性;对于Wishart型矩阵,我们通过附录B中提供的紧度准则获得 对 的紧度。 的极限为 也是有特点的。