当前位置: X-MOL 学术Random Matrices Theory Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Eigenvalue distributions of high-dimensional matrix processes driven by fractional Brownian motion
Random Matrices: Theory and Applications ( IF 0.9 ) Pub Date : 2024-05-20 , DOI: 10.1142/s2010326324500096
Jian Song 1, 2, 3 , Jianfeng Yao 1, 2, 3 , Wangjun Yuan 1, 2, 3
Affiliation  

In this paper, we study high-dimensional behavior of empirical spectral distributions {LN(t),t[0,T]} for a class of N×N symmetric/Hermitian random matrices, whose entries are generated from the solution of stochastic differential equation driven by fractional Brownian motion with Hurst parameter H(1/2,1). For Wigner-type matrices, we obtain almost sure relative compactness of {LN(t),t[0,T]}N in C([0,T],P()) following the approach in [1]; for Wishart-type matrices, we obtain tightness of {LN(t),t[0,T]}N on C([0,T],P()) by tightness criterions provided in Appendix B. The limit of {LN(t),t[0,T]} as N is also characterized.



中文翻译:


分数布朗运动驱动的高维矩阵过程的特征值分布



在本文中,我们研究了一类 N×N 对称/厄米特随机矩阵的经验谱分布 {LN(t),t[0,T]} 的高维行为,其条目是由随机微分方程驱动的解生成的通过具有 Hurst 参数 H(1/2,1) 的分数布朗运动。对于维格纳型矩阵,按照[1]中的方法,我们在 C([0,T],P()) 中获得了几乎确定的 {LN(t),t[0,T]}N 的相对紧性;对于Wishart型矩阵,我们通过附录B中提供的紧度准则获得 {LN(t),t[0,T]}NC([0,T],P()) 的紧度。 {LN(t),t[0,T]} 的极限为 N 也是有特点的。

更新日期:2024-05-24
down
wechat
bug