当前位置: X-MOL 学术Random Matrices Theory Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Characteristic polynomials of orthogonal and symplectic random matrices, Jacobi ensembles & L-functions
Random Matrices: Theory and Applications ( IF 0.9 ) Pub Date : 2024-05-10 , DOI: 10.1142/s2010326324500060
Mustafa Alper Gunes 1
Affiliation  

Starting from Montgomery’s conjecture, there has been a substantial interest on the connections of random matrix theory and the theory of L-functions. In particular, moments of characteristic polynomials of random matrices have been considered in various works to estimate the asymptotics of moments of L-function families. In this paper, we first consider joint moments of the characteristic polynomial of a symplectic random matrix and its second derivative. We obtain the asymptotics, along with a representation of the leading order coefficient in terms of the solution of a Painlevé equation. This gives us the conjectural asymptotics of the corresponding joint moments over families of Dirichlet L-functions. In doing so, we compute the asymptotics of a certain additive Jacobi statistic, which could be of independent interest in random matrix theory. Finally, we consider a slightly different type of joint moment that is the analogue of an average considered over U(N) in various works before. We obtain the asymptotics and the leading order coefficient explicitly.



中文翻译:


正交和辛随机矩阵的特征多项式、雅可比系综和 L 函数



从蒙哥马利猜想开始,人们对随机矩阵理论和L函数理论的联系产生了浓厚的兴趣。特别是,随机矩阵的特征多项式的矩已在各种工作中被考虑来估计 L 函数族矩的渐近性。在本文中,我们首先考虑辛随机矩阵的特征多项式及其二阶导数的联合矩。我们获得了渐近方程,以及以 Painlevé 方程的解表示的首阶系数。这给了我们狄利克雷 L 函数族上相应联合矩的猜想渐近性。在此过程中,我们计算了某个加性雅可比统计量的渐近,这在随机矩阵理论中可能具有独立的意义。最后,我们考虑一种稍微不同类型的关节力矩,它类似于之前各种工作中考虑的 U(N) 平均值。我们明确地获得了渐进系数和首阶系数。

更新日期:2024-05-10
down
wechat
bug