当前位置:
X-MOL 学术
›
Biotechnol. Adv.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
ATP regeneration by ATPases for in vitro biotransformation
Biotechnology Advances ( IF 12.1 ) Pub Date : 2024-05-17 , DOI: 10.1016/j.biotechadv.2024.108377 Lijing Chang 1 , Huijuan Cui 1 , Fei Li 1 , Yi-Heng P Job Zhang 2 , Lingling Zhang 2
Biotechnology Advances ( IF 12.1 ) Pub Date : 2024-05-17 , DOI: 10.1016/j.biotechadv.2024.108377 Lijing Chang 1 , Huijuan Cui 1 , Fei Li 1 , Yi-Heng P Job Zhang 2 , Lingling Zhang 2
Affiliation
Adenosine triphosphate (ATP) regeneration is a significant step in both living cells and biotransformation (BT). Rotary motor ATP synthases (ATPases), which regenerate ATP in living cells, have been widely assembled in biomimetic structures for ATP synthesis. In this review, we present a comprehensive overview of ATPases, including the working principle, orientation and distribution density properties of ATPases, as well as the assembly strategies and applications of ATPase-based ATP regeneration modules. The original sources of ATPases for ATP regeneration include chromatophores, chloroplasts, mitochondria, and inverted () vesicles, which are readily accessible but unstable. Although significant advances have been made in the assembly methods for ATPase-artificial membranes in recent decades, it remains challenging to replicate the high density and orientation of ATPases observed using assembly methods. The use of bioproton pumps or chemicals for constructing proton motive forces (PMF) enables the versatility and potential of ATPase-based ATP regeneration modules. Additionally, overall robustness can be achieved membrane component selection, such as polymers offering great mechanical stability, or by constructing a solid supporting matrix through layer-by-layer assembly techniques. Finally, the prospects of ATPase-based ATP regeneration modules can be expected with the technological development of ATPases and artificial membranes.
中文翻译:
通过 ATP 酶再生 ATP 用于体外生物转化
三磷酸腺苷 (ATP) 再生是活细胞和生物转化 (BT) 中的重要一步。旋转马达 ATP 合酶 (ATPase) 可在活细胞中再生 ATP,已广泛组装在仿生结构中用于 ATP 合成。在这篇综述中,我们对 ATPase 进行了全面的概述,包括 ATPase 的工作原理、方向和分布密度特性,以及基于 ATPase 的 ATP 再生模块的组装策略和应用。用于 ATP 再生的 ATP 酶的原始来源包括色素细胞、叶绿体、线粒体和倒转 () 囊泡,这些来源很容易获得,但不稳定。尽管近几十年来 ATP 酶人工膜的组装方法取得了重大进展,但复制使用组装方法观察到的 ATP 酶的高密度和方向仍然具有挑战性。使用生物质子泵或化学品构建质子动力 (PMF) 可以实现基于 ATP 酶的 ATP 再生模块的多功能性和潜力。此外,整体坚固性可以通过膜组件的选择来实现,例如提供良好机械稳定性的聚合物,或者通过逐层组装技术构建固体支撑基质。最后,随着ATP酶和人工膜技术的发展,基于ATP酶的ATP再生模块的前景值得期待。
更新日期:2024-05-17
中文翻译:
通过 ATP 酶再生 ATP 用于体外生物转化
三磷酸腺苷 (ATP) 再生是活细胞和生物转化 (BT) 中的重要一步。旋转马达 ATP 合酶 (ATPase) 可在活细胞中再生 ATP,已广泛组装在仿生结构中用于 ATP 合成。在这篇综述中,我们对 ATPase 进行了全面的概述,包括 ATPase 的工作原理、方向和分布密度特性,以及基于 ATPase 的 ATP 再生模块的组装策略和应用。用于 ATP 再生的 ATP 酶的原始来源包括色素细胞、叶绿体、线粒体和倒转 () 囊泡,这些来源很容易获得,但不稳定。尽管近几十年来 ATP 酶人工膜的组装方法取得了重大进展,但复制使用组装方法观察到的 ATP 酶的高密度和方向仍然具有挑战性。使用生物质子泵或化学品构建质子动力 (PMF) 可以实现基于 ATP 酶的 ATP 再生模块的多功能性和潜力。此外,整体坚固性可以通过膜组件的选择来实现,例如提供良好机械稳定性的聚合物,或者通过逐层组装技术构建固体支撑基质。最后,随着ATP酶和人工膜技术的发展,基于ATP酶的ATP再生模块的前景值得期待。