由于多尺度结构层次,天然的 Bouligand 结构使甲壳类外骨骼和水果能够实现卓越的机械鲁棒性和出色的手性光学特性。然而,将如此高的强度-刚度-韧性组合和光子功能集成到合成水凝胶中仍然是一个巨大的挑战。在这项工作中,我们报告了一种简单而通用的仿生策略,通过在多长度尺度上密切模仿天然布利根结构来构建超鲁棒的手性光学水凝胶。长程有序纤维素纳米晶体的 Bouligand 结构、明确的聚(乙烯醇)纳米晶域和动态界面相互作用的分级结构工程协同有助于高强度(23.3 MPa)、优异模量(264 MPa)、高韧性(54.7 MJ m –3 )以及非凡的抗冲击性,远远超过天然材料和合成光子水凝胶。更重要的是,具有高分辨率的无缝手性光学和溶剂响应图案也可以通过光子带的局部操作可扩展地集成到水凝胶中,同时保持良好的离子电导率。这种特殊的机械-光子组合在可穿戴传感器、加密、显示器和软机器人领域具有巨大的应用潜力。
"点击查看英文标题和摘要"
Biomimetic Mechanically Robust Chiroptical Hydrogel Enabled by Hierarchical Bouligand Structure Engineering
Natural bouligand structures enable crustacean exoskeletons and fruits to strike a combination of exceptional mechanical robustness and brilliant chiroptical properties owing to multiscale structural hierarchy. However, integrating such a high strength-stiffness-toughness combination and photonic functionalities into synthetic hydrogels still remains a grand challenge. In this work, we report a simple yet general biomimetic strategy to construct an ultrarobust chiroptical hydrogel by closely mimicking the natural bouligand structure at multilength scale. The hierarchical structural engineering of long-range ordered cellulose nanocrystals’ bouligand structure, well-defined poly(vinyl alcohol) nanocrystalline domains, and dynamic interfacial interaction synergistically contributes to the integration of high strength (23.3 MPa), superior modulus (264 MPa), and high toughness (54.7 MJ m–3), as well as extraordinary impact resistance, which far exceed their natural counterparts and synthetic photonic hydrogels. More importantly, seamless chiroptical and solvent-responsive patterns with high resolution can also be scalably integrated into the hydrogel by localized manipulation of the photonic band, while maintaining good ionic conductivity. Such exceptional mechanical-photonic combination holds tremendous potential for applications in wearable sensors, encryption, displays, and soft robotics.