当前位置:
X-MOL 学术
›
ACS Appl. Nano Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Light-Driven Nanonetwork Assembly of Gold Nanoparticles via 3D Printing for Optical Sensors
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2024-05-23 , DOI: 10.1021/acsanm.4c01673
Arunachalam Ramanathan 1 , Shuai Feng 2 , Abhishek Saji Kumar 2 , Sri Vaishnavi Thummalapalli 1 , Martin Taylor Sobczak 1 , Lindsay R Bick 1 , Kenan Song 3, 4 , Sui Yang 5
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2024-05-23 , DOI: 10.1021/acsanm.4c01673
Arunachalam Ramanathan 1 , Shuai Feng 2 , Abhishek Saji Kumar 2 , Sri Vaishnavi Thummalapalli 1 , Martin Taylor Sobczak 1 , Lindsay R Bick 1 , Kenan Song 3, 4 , Sui Yang 5
Affiliation
![]() |
Additive manufacturing known as 3D printing has transformed the material landscape, with intricate structures and rapid prototyping for modern production. While nanoscale 3D printing has made significant progress, a critical challenge remains in the rapid, high-throughput tailoring of complex nanostructures. Here, we present a 3D printing-facilitated, light-driven assembly technology for rapid surface patterning consisting of complex particle nanonetworks with balanced fabrication resolution and processing scalability. This innovative approach seamlessly integrates top-down 3D printing (i.e., fused deposition modeling (FDM)) of digitally encoded patterns with bottom-up nanoparticle assembly (i.e., plasmonic light-driven techniques). The manufacturing-structure relationship of the generated nanonetworks within macroscale cylindrical patterning is investigated through programmatic modulation of critical processing parameters, including polymer rheology, chain-mode plasmonic resonances, nanoparticle dimensions, and peak optical intensity. The capacity of nanoscale 3D printing with optical adjustment can not only achieve high-resolution patterning but also offer precise control over large-scale geometries for applications in optical sensing.
中文翻译:
通过 3D 打印光学传感器对金纳米粒子进行光驱动纳米网络组装
被称为 3D 打印的增材制造已经改变了材料格局,为现代生产提供了复杂的结构和快速原型制造。虽然纳米级 3D 打印取得了重大进展,但复杂纳米结构的快速、高通量定制仍然存在关键挑战。在这里,我们提出了一种 3D 打印促进的光驱动组装技术,用于快速表面图案化,该技术由具有平衡制造分辨率和加工可扩展性的复杂颗粒纳米网络组成。这种创新方法将数字编码图案的自上而下的 3D 打印(即熔融沉积建模 (FDM))与自下而上的纳米颗粒组装(即等离子体光驱动技术)无缝集成。通过对关键加工参数(包括聚合物流变学、链式等离子体共振、纳米颗粒尺寸和峰值光学强度)的编程调制来研究宏观圆柱形图案中生成的纳米网络的制造-结构关系。具有光学调整功能的纳米级 3D 打印功能不仅可以实现高分辨率图案化,还可以为光学传感应用提供对大尺寸几何形状的精确控制。
更新日期:2024-05-23
中文翻译:

通过 3D 打印光学传感器对金纳米粒子进行光驱动纳米网络组装
被称为 3D 打印的增材制造已经改变了材料格局,为现代生产提供了复杂的结构和快速原型制造。虽然纳米级 3D 打印取得了重大进展,但复杂纳米结构的快速、高通量定制仍然存在关键挑战。在这里,我们提出了一种 3D 打印促进的光驱动组装技术,用于快速表面图案化,该技术由具有平衡制造分辨率和加工可扩展性的复杂颗粒纳米网络组成。这种创新方法将数字编码图案的自上而下的 3D 打印(即熔融沉积建模 (FDM))与自下而上的纳米颗粒组装(即等离子体光驱动技术)无缝集成。通过对关键加工参数(包括聚合物流变学、链式等离子体共振、纳米颗粒尺寸和峰值光学强度)的编程调制来研究宏观圆柱形图案中生成的纳米网络的制造-结构关系。具有光学调整功能的纳米级 3D 打印功能不仅可以实现高分辨率图案化,还可以为光学传感应用提供对大尺寸几何形状的精确控制。