当前位置:
X-MOL 学术
›
Process Saf. Environ. Prot.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Modeling, validation, and optimization of a rotating advanced oxidation contactor equipped with TiO2-zeolite composite sheets for sulfamethazine removal
Process Safety and Environmental Protection ( IF 6.9 ) Pub Date : 2024-05-11 , DOI: 10.1016/j.psep.2024.05.031 Wanni Zhang , Youhei Nomura , Shuji Fukahori , Tadayuki Kiso , Kenichi Myoujin , Taku Fujiwara
Process Safety and Environmental Protection ( IF 6.9 ) Pub Date : 2024-05-11 , DOI: 10.1016/j.psep.2024.05.031 Wanni Zhang , Youhei Nomura , Shuji Fukahori , Tadayuki Kiso , Kenichi Myoujin , Taku Fujiwara
The necessity to remove antibiotic residues such as sulfamethazine from veterinary/hospital wastewater is evident due to their widespread existence, challenges in treatment, and potential harm in aquatic ecosystems. This study focused on modeling, validating, and optimizing the removal of sulfamethazine (SMT) using two lab-scale rotating advanced oxidation contactor (RAOC) systems equipped with TiO-zeolite composite sheets. Four key parameters—temperature, UV intensity, rotation speed, and sheet area by tank volume ()—were investigated to understand their individual effects and interactions using the drum-RAOC system. The adsorption and decomposition processes of the RAOC systems were separately studied. In terms of the adsorption process, was found to be the primary parameter influencing RAOC performance, with significant interaction observed between temperature and . For the decomposition process, and UV intensity were identified as the dominant parameters, with interactions affecting photocatalysis performance. Kinetic fitting was used to explore the underlying mechanisms, and liquid film thickness on the sheet surface was employed to support the explanations. Furthermore, validation experiments conducted using the disk-RAOC system confirmed the accuracy and applicability of these models. Through comprehensive optimization, the optimal parameter set was determined: temperature of 20°C, rotation speed of 5 rpm, UV intensity of 1.5 mW/cm, and of 200 cm/L. Additionally, the current findings were compared with previous studies to illustrate the efficiency of RAOC systems. These results provide valuable guidelines for designing and operating RAOC systems and serve as a reference for balancing performance and consumption in immobilized photocatalysis systems.
中文翻译:
配备 TiO2-沸石复合片以去除磺胺二甲嘧啶的旋转高级氧化接触器的建模、验证和优化
由于抗生素残留物(例如磺胺二甲嘧啶)的广泛存在、处理方面的挑战以及对水生生态系统的潜在危害,从兽医/医院废水中去除磺胺二甲嘧啶等抗生素残留物的必要性是显而易见的。本研究的重点是使用两个配备 TiO2-沸石复合片的实验室规模旋转高级氧化接触器 (RAOC) 系统对磺胺二甲嗪 (SMT) 的去除进行建模、验证和优化。使用转鼓-RAOC 系统对四个关键参数(温度、紫外线强度、旋转速度和片材面积与罐体积 ())进行了研究,以了解它们各自的影响和相互作用。分别研究了RAOC系统的吸附和分解过程。就吸附过程而言,发现 是影响 RAOC 性能的主要参数,在温度和 之间观察到显着的相互作用。对于分解过程,紫外线强度被确定为主要参数,相互作用影响光催化性能。使用动力学拟合来探索潜在的机制,并使用片材表面上的液膜厚度来支持这一解释。此外,使用磁盘 RAOC 系统进行的验证实验证实了这些模型的准确性和适用性。通过综合优化,确定最佳参数组:温度20℃、转速5rpm、紫外光强度1.5mW/cm、200cm/L。此外,将当前的研究结果与之前的研究进行比较,以说明 RAOC 系统的效率。这些结果为设计和操作 RAOC 系统提供了有价值的指导,并为平衡固定光催化系统的性能和消耗提供了参考。
更新日期:2024-05-11
中文翻译:
配备 TiO2-沸石复合片以去除磺胺二甲嘧啶的旋转高级氧化接触器的建模、验证和优化
由于抗生素残留物(例如磺胺二甲嘧啶)的广泛存在、处理方面的挑战以及对水生生态系统的潜在危害,从兽医/医院废水中去除磺胺二甲嘧啶等抗生素残留物的必要性是显而易见的。本研究的重点是使用两个配备 TiO2-沸石复合片的实验室规模旋转高级氧化接触器 (RAOC) 系统对磺胺二甲嗪 (SMT) 的去除进行建模、验证和优化。使用转鼓-RAOC 系统对四个关键参数(温度、紫外线强度、旋转速度和片材面积与罐体积 ())进行了研究,以了解它们各自的影响和相互作用。分别研究了RAOC系统的吸附和分解过程。就吸附过程而言,发现 是影响 RAOC 性能的主要参数,在温度和 之间观察到显着的相互作用。对于分解过程,紫外线强度被确定为主要参数,相互作用影响光催化性能。使用动力学拟合来探索潜在的机制,并使用片材表面上的液膜厚度来支持这一解释。此外,使用磁盘 RAOC 系统进行的验证实验证实了这些模型的准确性和适用性。通过综合优化,确定最佳参数组:温度20℃、转速5rpm、紫外光强度1.5mW/cm、200cm/L。此外,将当前的研究结果与之前的研究进行比较,以说明 RAOC 系统的效率。这些结果为设计和操作 RAOC 系统提供了有价值的指导,并为平衡固定光催化系统的性能和消耗提供了参考。