当前位置:
X-MOL 学术
›
J. Colloid Interface Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Aqueous AlCl3/ZnCl2 solution room-induced the self-growing strategy of expanded topological network for cellulose/polyacrylamide-based solid-state electrolytes
Journal of Colloid and Interface Science ( IF 9.4 ) Pub Date : 2024-05-16 , DOI: 10.1016/j.jcis.2024.05.102 Xin Li 1 , Youlong Wang 1 , Yahui Tian 1 , Zhiguo Wang 1 , Lili Zhang 1 , Jinxia Ma 1
Journal of Colloid and Interface Science ( IF 9.4 ) Pub Date : 2024-05-16 , DOI: 10.1016/j.jcis.2024.05.102 Xin Li 1 , Youlong Wang 1 , Yahui Tian 1 , Zhiguo Wang 1 , Lili Zhang 1 , Jinxia Ma 1
Affiliation
The green synthesis strategy for cellulose-containing hydrogel electrolytes is significant for effectively managing resources, energy, and environmental concerns in the contemporary world. Herein, we propose an all-green strategy using AlCl/ZnCl/HO solvent to create cellulose/polyacrylamide-based hydrogel (AZ-Cel/PAM) with expanded hierarchical topologies. The aqueous AlCl/ZnCl facilitates the efficient dissolution of cellulose at room temperature, and the dispersed Al-Zn ions autocatalytic system catalyzes in-situ polymerization of acrylamide (AM) monomer. This expands the AM network within the cellulose framework, forming multiple bonding interactions and stable ion channels. The resulting hybrid hydrogel exhibits improved mechanical properties (tensile strength of 56.54 kPa and compressive strength of 359.43 kPa) and enhanced ionic conductivity (1.99 S/m). Furthermore, it also demonstrates excellent adhesion, freeze resistance (−45 °C), and water retention capabilities. Quantum simulations further clarify the mechanical composition and ion transport mechanism of AZ-Cel/PAM hydrogels. The assembled supercapacitor with the hydrogel electrolyte, demonstrates an ideal area-specific capacitance of 203.80 mF/cm. This all-green strategy presents a novel approach to developing sustainable energy storage devices.
中文翻译:
AlCl3/ZnCl2 水溶液室诱导纤维素/聚丙烯酰胺基固态电解质扩展拓扑网络的自生长策略
含纤维素水凝胶电解质的绿色合成策略对于有效管理当今世界的资源、能源和环境问题具有重要意义。在此,我们提出了一种全绿色策略,使用 AlCl/ZnCl/H2O 溶剂来创建具有扩展分层拓扑的纤维素/聚丙烯酰胺基水凝胶(AZ-Cel/PAM)。水性AlCl/ZnCl有利于纤维素在室温下的有效溶解,分散的Al-Zn离子自催化体系催化丙烯酰胺(AM)单体的原位聚合。这扩展了纤维素框架内的 AM 网络,形成多重键合相互作用和稳定的离子通道。所得混合水凝胶表现出改善的机械性能(拉伸强度为 56.54 kPa,压缩强度为 359.43 kPa)和增强的离子电导率(1.99 S/m)。此外,它还表现出优异的附着力、抗冻性(-45°C)和保水能力。量子模拟进一步阐明了 AZ-Cel/PAM 水凝胶的机械组成和离子传输机制。与水凝胶电解质组装的超级电容器表现出理想的面积比电容为 203.80 mF/cm。这种全绿色战略提出了一种开发可持续能源存储设备的新方法。
更新日期:2024-05-16
中文翻译:
AlCl3/ZnCl2 水溶液室诱导纤维素/聚丙烯酰胺基固态电解质扩展拓扑网络的自生长策略
含纤维素水凝胶电解质的绿色合成策略对于有效管理当今世界的资源、能源和环境问题具有重要意义。在此,我们提出了一种全绿色策略,使用 AlCl/ZnCl/H2O 溶剂来创建具有扩展分层拓扑的纤维素/聚丙烯酰胺基水凝胶(AZ-Cel/PAM)。水性AlCl/ZnCl有利于纤维素在室温下的有效溶解,分散的Al-Zn离子自催化体系催化丙烯酰胺(AM)单体的原位聚合。这扩展了纤维素框架内的 AM 网络,形成多重键合相互作用和稳定的离子通道。所得混合水凝胶表现出改善的机械性能(拉伸强度为 56.54 kPa,压缩强度为 359.43 kPa)和增强的离子电导率(1.99 S/m)。此外,它还表现出优异的附着力、抗冻性(-45°C)和保水能力。量子模拟进一步阐明了 AZ-Cel/PAM 水凝胶的机械组成和离子传输机制。与水凝胶电解质组装的超级电容器表现出理想的面积比电容为 203.80 mF/cm。这种全绿色战略提出了一种开发可持续能源存储设备的新方法。