当前位置: X-MOL 学术SIAM J. Numer. Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pointwise Gradient Estimate of the Ritz Projection
SIAM Journal on Numerical Analysis ( IF 2.8 ) Pub Date : 2024-05-21 , DOI: 10.1137/23m1571800
Lars Diening 1 , Julian Rolfes 1 , Abner J. Salgado 2
Affiliation  

SIAM Journal on Numerical Analysis, Volume 62, Issue 3, Page 1212-1225, June 2024.
Abstract. Let [math] be a convex polytope ([math]). The Ritz projection is the best approximation, in the [math]-norm, to a given function in a finite element space. When such finite element spaces are constructed on the basis of quasiuniform triangulations, we show a pointwise estimate on the Ritz projection. Namely, the gradient at any point in [math] is controlled by the Hardy–Littlewood maximal function of the gradient of the original function at the same point. From this estimate, the stability of the Ritz projection on a wide range of spaces that are of interest in the analysis of PDEs immediately follows. Among those are weighted spaces, Orlicz spaces, and Lorentz spaces.


中文翻译:


Ritz 投影的逐点梯度估计



《SIAM 数值分析杂志》,第 62 卷,第 3 期,第 1212-1225 页,2024 年 6 月。

抽象的。设 [math] 为凸多面体 ([math])。在数学范数中,里兹投影是有限元空间中给定函数的最佳近似。当这种有限元空间基于准均匀三角剖分构建时,我们会显示 Ritz 投影的逐点估计。也就是说,[math] 中任意点的梯度由同一点原始函数梯度的 Hardy-Littlewood 极大函数控制。根据这一估计,紧随偏微分方程分析中感兴趣的各种空间上的里兹投影的稳定性。其中包括加权空间、Orlicz 空间和洛伦兹空间。
更新日期:2024-05-22
down
wechat
bug