当前位置: X-MOL 学术Electrochem. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Finite element modeling simulation of oxygen evolution during charging in lithium-oxygen batteries
Electrochemistry Communications ( IF 4.7 ) Pub Date : 2024-05-11 , DOI: 10.1016/j.elecom.2024.107752
Shotaro Hanada , Shuji Nakanishi , Yoshiharu Mukouyama

The quest for advanced energy storage solutions has intensified the focus on developing next-generation secondary batteries, with lithium-oxygen batteries (LOB) standing out for their superior theoretical gravimetric energy density. This study introduces a novel model-based approach to battery development, enabling the detailed analysis of charge–discharge cycles and oxygen evolution efficiency within a virtual environment. Our model distinctively simulates the oxidative decomposition of lithium peroxide (LiO) and differentiates between its formation through solution and surface pathways, addressing the complexities of the charging process and its multiple elementary steps. The developed model further categorizes the oxidative decomposition species into four distinct types, facilitating a comprehensive understanding of their interactions, voltage profile changes, and O evolution within the battery's porous cathode. This approach not only enhances the understanding of battery behavior but also aids in refining the design of component materials, thereby propelling forward the development of LOBs with improved energy density and cycle performance.

中文翻译:


锂氧电池充电过程中析氧的有限元建模模拟



对先进储能解决方案的追求加强了对开发下一代二次电池的关注,其中锂氧电池(LOB)因其卓越的理论重量能量密度而脱颖而出。这项研究引入了一种基于模型的新型电池开发方法,可以在虚拟环境中详细分析充放电循环和析氧效率。我们的模型独特地模拟了过氧化锂 (LiO) 的氧化分解,并区分其通过溶液和表面途径的形成,解决了充电过程及其多个基本步骤的复杂性。开发的模型进一步将氧化分解物质分为四种不同的类型,有助于全面了解它们的相互作用、电压分布变化以及电池多孔阴极内的氧气释放。这种方法不仅增强了对电池行为的理解,还有助于完善组件材料的设计,从而推动能量密度和循环性能提高的 LOB 的开发。
更新日期:2024-05-11
down
wechat
bug