当前位置: X-MOL 学术Fract. Calc. Appl. Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Principal curves to fractional m-Laplacian systems and related maximum and comparison principles
Fractional Calculus and Applied Analysis ( IF 2.5 ) Pub Date : 2024-05-20 , DOI: 10.1007/s13540-024-00293-1
Anderson L. A. de Araujo , Edir J. F. Leite , Aldo H. S. Medeiros

In this paper we develop a comprehensive study on principal eigenvalues and both the (weak and strong) maximum and comparison principles related to an important class of nonlinear systems involving fractional m-Laplacian operators. Explicit lower bounds for principal eigenvalues of this system in terms of the diameter of bounded domain \(\varOmega \subset {\mathbb {R}}^N\) are also proved. As application, we measure explicitly how small has to be \(\text {diam}(\varOmega )\) so that weak and strong maximum principles associated to this problem hold in \(\varOmega \).



中文翻译:


分数 m-拉普拉斯系统的主曲线以及相关的最大值和比较原理



在本文中,我们对涉及分数 m 拉普拉斯算子的一​​类重要的非线性系统相关的主特征值以及(弱和强)最大值和比较原理进行了全面的研究。还证明了该系统的主特征值的显式下界,以有界域 \(\varOmega \subset {\mathbb {R}}^N\) 的直径表示。作为应用,我们明确测量 \(\text {diam}(\varOmega )\) 必须有多小,以便与该问题相关的弱和强最大原理在 \(\varOmega \) 中成立。

更新日期:2024-05-21
down
wechat
bug