当前位置:
X-MOL 学术
›
ACS Appl. Polym. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Preparation and Characterization of Cellulose Nanofibers/Polybenzoxazine–Poly(vinyl alcohol) Double Network Foam Based on Multiple Hydrogen Bond Structure
ACS Applied Polymer Materials ( IF 4.4 ) Pub Date : 2024-05-16 , DOI: 10.1021/acsapm.4c00232 Enwen Liu 1, 2 , Zhihui Wu 1, 2
ACS Applied Polymer Materials ( IF 4.4 ) Pub Date : 2024-05-16 , DOI: 10.1021/acsapm.4c00232 Enwen Liu 1, 2 , Zhihui Wu 1, 2
Affiliation
Utilizing a multiple hydrogen bond structure, a dual-network hybrid foam of cellulose nanofibers/polybenzoxazine–poly(vinyl alcohol) (CNFs/PBZ–PVA) was successfully synthesized for the first time through a one-pot method. By combining the rigidity of the CNFs–PVA network and the elasticity of the PBZ–PVA network, a dual-network foam with balanced mechanical properties and resilience was achieved. SEM results revealed that CNFs/PBZ–PVA possesses a regular honeycomb network structure, ensuring uniform pore distribution (10–40 μm) and a porosity of over 97%. Chemical analysis indicated that through the introduction of long-chain polybenzoxazine molecules and their connection through the intermediate carrier of poly(vinyl alcohol), the CNFs–PVA and PBZ–PVA networks were physically entangled, forming a dense, uniformly porous, and heat-resistant hybrid foam structure with multiple hydrogen bonds. At room temperature, the foam exhibited outstanding resilience, quickly recovering after 60% compression deformation and displaying fatigue resistance (a recovery rate of more than 95% can be maintained after 30 compression cycles). Moreover, its resilience remained unchanged after treatment with liquid nitrogen (−196 °C), overcoming the shortcomings of conventional nanocellulose-based foams in terms of poor resilience and fragility. Additionally, under extremely acidic or alkaline conditions, the hybrid foam demonstrated excellent chemical stability, expanding its potential applications in extreme conditions. Finally, the CNFs foam exhibited remarkable thermal insulation (thermal conductivity is low to 0.057 W/(m·K)) and self-extinguishing properties, making it a promising material for certain special environments.
中文翻译:
基于多重氢键结构的纤维素纳米纤维/聚苯并恶嗪-聚乙烯醇双网络泡沫的制备及表征
利用多重氢键结构,首次通过一锅法成功合成了纤维素纳米纤维/聚苯并恶嗪-聚乙烯醇(CNFs/PBZ-PVA)的双网络混合泡沫。通过结合CNFs-PVA网络的刚性和PBZ-PVA网络的弹性,获得了具有均衡机械性能和回弹性的双网络泡沫。 SEM结果显示,CNFs/PBZ-PVA具有规则的蜂窝网络结构,保证了均匀的孔隙分布(10-40μm)和孔隙率超过97%。化学分析表明,通过引入长链聚苯并恶嗪分子并通过聚乙烯醇中间载体连接,CNFs-PVA和PBZ-PVA网络发生物理缠结,形成致密、均匀多孔、耐热的结构。具有多个氢键的耐磨混合泡沫结构。室温下,泡沫表现出优异的回弹性,60%压缩变形后可快速恢复,并表现出抗疲劳性能(30次压缩循环后仍能保持95%以上的恢复率)。而且,经液氮(-196℃)处理后,其回弹性保持不变,克服了传统纳米纤维素基泡沫回弹性差、易碎的缺点。此外,在极端酸性或碱性条件下,混合泡沫表现出优异的化学稳定性,扩大了其在极端条件下的潜在应用。最后,CNFs泡沫表现出显着的隔热性能(导热系数低至0.057 W/(m·K))和自熄性能,使其成为某些特殊环境下有前景的材料。
更新日期:2024-05-16
中文翻译:
基于多重氢键结构的纤维素纳米纤维/聚苯并恶嗪-聚乙烯醇双网络泡沫的制备及表征
利用多重氢键结构,首次通过一锅法成功合成了纤维素纳米纤维/聚苯并恶嗪-聚乙烯醇(CNFs/PBZ-PVA)的双网络混合泡沫。通过结合CNFs-PVA网络的刚性和PBZ-PVA网络的弹性,获得了具有均衡机械性能和回弹性的双网络泡沫。 SEM结果显示,CNFs/PBZ-PVA具有规则的蜂窝网络结构,保证了均匀的孔隙分布(10-40μm)和孔隙率超过97%。化学分析表明,通过引入长链聚苯并恶嗪分子并通过聚乙烯醇中间载体连接,CNFs-PVA和PBZ-PVA网络发生物理缠结,形成致密、均匀多孔、耐热的结构。具有多个氢键的耐磨混合泡沫结构。室温下,泡沫表现出优异的回弹性,60%压缩变形后可快速恢复,并表现出抗疲劳性能(30次压缩循环后仍能保持95%以上的恢复率)。而且,经液氮(-196℃)处理后,其回弹性保持不变,克服了传统纳米纤维素基泡沫回弹性差、易碎的缺点。此外,在极端酸性或碱性条件下,混合泡沫表现出优异的化学稳定性,扩大了其在极端条件下的潜在应用。最后,CNFs泡沫表现出显着的隔热性能(导热系数低至0.057 W/(m·K))和自熄性能,使其成为某些特殊环境下有前景的材料。