当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enhancing Electrochemical Sensing through Molecular Engineering of Reduced Graphene Oxide–Solution Interfaces and Remote Floating-Gate FET Analysis
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-05-15 , DOI: 10.1021/acsami.4c03999 Wen Zhuang 1, 2 , Hyun-June Jang 1, 2 , Xiaoyu Sui 1, 2 , Byunghoon Ryu 2 , Yuqin Wang 1, 2 , Haihui Pu 1, 2 , Junhong Chen 1, 2
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-05-15 , DOI: 10.1021/acsami.4c03999 Wen Zhuang 1, 2 , Hyun-June Jang 1, 2 , Xiaoyu Sui 1, 2 , Byunghoon Ryu 2 , Yuqin Wang 1, 2 , Haihui Pu 1, 2 , Junhong Chen 1, 2
Affiliation
Two-dimensional nanomaterials such as reduced graphene oxide (rGO) have captured significant attention in the realm of field-effect transistor (FET) sensors due to their inherent high sensitivity and cost-effective manufacturing. Despite their attraction, a comprehensive understanding of rGO–solution interfaces (specifically, electrochemical interfacial properties influenced by linker molecules and surface chemistry) remains challenging, given the limited capability of analytical tools to directly measure intricate solution interface properties. In this study, we introduce an analytical tool designed to directly measure the surface charge density of the rGO–solution interface leveraging the remote floating-gate FET (RFGFET) platform. Our methodology involves characterizing the electrochemical properties of rGO, which are influenced by adhesion layers between SiO2 and rGO, such as (3-aminopropyl)trimethoxysilane (APTMS) and hexamethyldisilazane (HMDS). The hydrophilic nature of APTMS facilitates the acceptance of oxygen-rich rGO, resulting in a noteworthy pH sensitivity of 56.8 mV/pH at the rGO–solution interface. Conversely, hydrophobic HMDS significantly suppresses the pH sensitivity from the rGO–solution interface, attributed to the graphitic carbon-rich surface of rGO. Consequently, the carbon-rich surface facilitates a denser arrangement of 1-pyrenebutyric acid N-hydroxysuccinimide ester linkers for functionalizing capturing probes on rGO, resulting in an enhanced sensitivity of lead ions by 32% in our proof-of-concept test.
中文翻译:
通过还原氧化石墨烯溶液界面的分子工程和远程浮栅 FET 分析增强电化学传感
还原氧化石墨烯 (rGO) 等二维纳米材料因其固有的高灵敏度和经济高效的制造而在场效应晶体管 (FET) 传感器领域引起了广泛关注。尽管它们很有吸引力,但鉴于分析工具直接测量复杂溶液界面性质的能力有限,全面了解 rGO-溶液界面(特别是受连接分子和表面化学影响的电化学界面性质)仍然具有挑战性。在本研究中,我们引入了一种分析工具,旨在利用远程浮栅 FET (RFGFET) 平台直接测量 rGO 与溶液界面的表面电荷密度。我们的方法涉及表征 rGO 的电化学性能,该性能受到 SiO 2和 rGO 之间的粘附层(例如(3-氨基丙基)三甲氧基硅烷 (APTMS) 和六甲基二硅氮烷 (HMDS))的影响。 APTMS 的亲水性有利于富氧 rGO 的接受,导致 rGO 与溶液界面的 pH 敏感性高达 56.8 mV/pH。相反,疏水性 HMDS 显着抑制 rGO-溶液界面的 pH 敏感性,这归因于 rGO 的石墨富碳表面。因此,富含碳的表面有利于 1-芘丁酸N-羟基琥珀酰亚胺酯连接体的更密集排列,从而使 rGO 上的捕获探针功能化,从而在我们的概念验证测试中将铅离子的灵敏度提高了 32%。
更新日期:2024-05-15
中文翻译:
通过还原氧化石墨烯溶液界面的分子工程和远程浮栅 FET 分析增强电化学传感
还原氧化石墨烯 (rGO) 等二维纳米材料因其固有的高灵敏度和经济高效的制造而在场效应晶体管 (FET) 传感器领域引起了广泛关注。尽管它们很有吸引力,但鉴于分析工具直接测量复杂溶液界面性质的能力有限,全面了解 rGO-溶液界面(特别是受连接分子和表面化学影响的电化学界面性质)仍然具有挑战性。在本研究中,我们引入了一种分析工具,旨在利用远程浮栅 FET (RFGFET) 平台直接测量 rGO 与溶液界面的表面电荷密度。我们的方法涉及表征 rGO 的电化学性能,该性能受到 SiO 2和 rGO 之间的粘附层(例如(3-氨基丙基)三甲氧基硅烷 (APTMS) 和六甲基二硅氮烷 (HMDS))的影响。 APTMS 的亲水性有利于富氧 rGO 的接受,导致 rGO 与溶液界面的 pH 敏感性高达 56.8 mV/pH。相反,疏水性 HMDS 显着抑制 rGO-溶液界面的 pH 敏感性,这归因于 rGO 的石墨富碳表面。因此,富含碳的表面有利于 1-芘丁酸N-羟基琥珀酰亚胺酯连接体的更密集排列,从而使 rGO 上的捕获探针功能化,从而在我们的概念验证测试中将铅离子的灵敏度提高了 32%。