Journal of Molecular Modeling ( IF 2.1 ) Pub Date : 2024-05-18 , DOI: 10.1007/s00894-024-05966-5 K Deepakvijay 1 , A Prakasam 1
Context
This study delves into hole-electron transport and distribution properties inherent in mono-brominated dibenzofuran (DBF) and dibenzothiophene (DBT) isomers. As determined by frontier molecular orbitals, all brominated structures have narrower bandgaps than their primary structures. The TD-DFT calculation showed that 2BDBT had the highest absorption wavelength of all molecules at 315.35 nm. Notably, the study unveils remarkably low electron and hole reorganization energies due to bromine substitution in DBF and DBT molecules. Specifically, the 4BDBF has the lowest hole reorganization energy of all DBF configurations, 0.229 eV. In addition, 3BDBF has 0.226 eV less electron reorganization energy than all other molecules. Compared to DBT, 3BDBT has the lowest electron reorganization energy of 0.254 eV. Overall, this research sheds significant light on the fundamental electronic and hole transport characteristics of bromine-substituted DBF and DBT isomers, highlighting their promising role in polymer design as donors/acceptors for advanced organic electronic applications.
Methods
Molecular structures were optimized using Density Functional Theory (DFT) B3LYP/6-311 + + G (d, p) level of theory, and the study further elucidates these molecules’ energy levels and absorption spectra through Time-Dependent Density Functional Theory TD-DFT; these calculations were performed using Gaussian 09W software package. The key parameters such as reorganization energies, Electron Localization Function map, Laplacian Bond Order, and NCI-RDG were meticulously examined for the molecules with the results of DFT calculations were analyzed and displayed by utilizing the software packages VMD 1.9.4 and Multiwfn 3.8, aiming to comprehend their charge transport and distribution properties.
中文翻译:
探索单溴化对二苯并呋喃和二苯并噻吩异构体中空穴电子传输和分布的影响:第一性原理研究
语境
这项研究深入研究了单溴二苯并呋喃 (DBF) 和二苯并噻吩 (DBT) 异构体固有的空穴电子传输和分布特性。根据前沿分子轨道确定,所有溴化结构的带隙都比其一级结构窄。 TD-DFT计算表明2BDBT在315.35 nm处具有所有分子的最高吸收波长。值得注意的是,该研究揭示了由于 DBF 和 DBT 分子中的溴取代而导致的电子和空穴重组能量非常低。具体来说,4BDBF 具有所有 DBF 配置中最低的空穴重组能,为 0.229 eV。此外,3BDBF 的电子重组能比所有其他分子低 0.226 eV。与DBT相比,3BDBT的电子重组能最低,为0.254 eV。总体而言,这项研究对溴取代的 DBF 和 DBT 异构体的基本电子和空穴传输特性提供了重要的启示,强调了它们作为先进有机电子应用的供体/受体在聚合物设计中的前景广阔的作用。
方法
利用密度泛函理论(DFT)B3LYP/6-311++G(d,p)水平的理论对分子结构进行了优化,并通过瞬态密度泛函理论TD-进一步阐明了这些分子的能级和吸收光谱密度泛函理论;这些计算是使用 Gaussian 09W 软件包进行的。对分子的重组能、电子局域函数图、拉普拉斯键阶和NCI-RDG等关键参数进行了仔细检查,并利用软件包VMD 1.9.4和Multiwfn 3.8对DFT计算结果进行了分析和显示,旨在了解它们的电荷传输和分布特性。