当前位置:
X-MOL 学术
›
Journal of Environmental Sciences
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Transcriptomic and biochemical analysis of the mechanism of sodium gluconate promoting the degradation of benzo [a] pyrene by Bacillus subtilis MSC4
Journal of Environmental Sciences ( IF 5.9 ) Pub Date : 2024-04-25 , DOI: 10.1016/j.jes.2024.04.021 Rui Chen , Tangbing Cui
Journal of Environmental Sciences ( IF 5.9 ) Pub Date : 2024-04-25 , DOI: 10.1016/j.jes.2024.04.021 Rui Chen , Tangbing Cui
Benzo[a]pyrene (B[a]P) is a carcinogenic environmental pollutant widely present in the environment and can enter the human body through the food chain. It is therefore essential to treat and remediate the B[a]P-contaminated environment. Microbial remediation of B[a]P-contaminated environments is considered to be one of the most effective strategies, and the addition of biostimulants is a feasible method to further improve the effectiveness of microbial remediation. In this study, we used Bacillus subtilis MSC4 to screen for the stimulation of sodium gluconate, which promoted B[a]P degradation. Based on biochemical and transcriptomic analyses, Sodium gluconate was found to significantly increase the biomass of MSC4 and the expression of most genes involved in B[a]P degradation. Activities of central carbon metabolism, fatty acid β-oxidation and oxidative phosphorylation were all promoted. The significant increase in acid-induced oxalate decarboxylase expression indicates a decrease in intracellular pH, which promoted the synthesis of acetoin and lactate. Genes involved in the nitrogen cycle, especially nitrification and denitrification, were significantly up-regulated, contributing to B[a]P degradation. Genes involved in the synthesis of enzyme cofactors, including thiamine, molybdenum cofactors, NAD and heme, were up-regulated, which contributes to increasing enzyme activity in metabolic pathways. Up-regulation of genes in flagella assembly, chemotaxis, and lipopeptide synthesis is beneficial for the dissolution and uptake of B[a]P. Genes related to the sugar transport system were upregulated, which facilitates the transport and absorption of monosaccharides and oligosaccharides by MSC4. This study provides a theoretical basis for the further application of sodium gluconate in the treatment of PAH-contaminated sites.
中文翻译:
葡萄糖酸钠促进枯草芽孢杆菌 MSC4 降解苯并 [a] 芘的转录组学和生化分析机制
苯并[a]芘 (B[a]P) 是一种广泛存在于环境中的致癌环境污染物,可通过食物链进入人体。因此,处理和修复 B[a]P 污染的环境至关重要。对 B[a]P 污染环境进行微生物修复被认为是最有效的策略之一,添加生物刺激剂是进一步提高微生物修复效果的可行方法。在本研究中,我们使用枯草芽孢杆菌 MSC4 筛选葡萄糖酸钠的刺激,从而促进 B[a]P 降解。基于生化和转录组学分析,发现葡萄糖酸钠显着增加 MSC4 的生物量和参与 B[a]P 降解的大多数基因的表达。中枢碳代谢、脂肪酸β氧化和氧化磷酸化活性均得到促进。酸诱导的草酸盐脱羧酶表达的显着增加表明细胞内 pH 值降低,从而促进了乙偶英和乳酸的合成。参与氮循环的基因,尤其是硝化和反硝化,显著上调,导致 B[a]P 降解。参与合成酶辅因子(包括硫胺素、钼辅因子、NAD 和血红素)的基因上调,这有助于增加代谢途径中的酶活性。鞭毛组装、趋化性和脂肽合成中基因的上调有利于 B[a]P 的溶解和摄取。与糖转运系统相关的基因上调,这促进了 MSC4 对单糖和寡糖的转运和吸收。 本研究为葡萄糖酸钠在多环芳烃污染部位治理中的进一步应用提供了理论依据。
更新日期:2024-04-25
中文翻译:
葡萄糖酸钠促进枯草芽孢杆菌 MSC4 降解苯并 [a] 芘的转录组学和生化分析机制
苯并[a]芘 (B[a]P) 是一种广泛存在于环境中的致癌环境污染物,可通过食物链进入人体。因此,处理和修复 B[a]P 污染的环境至关重要。对 B[a]P 污染环境进行微生物修复被认为是最有效的策略之一,添加生物刺激剂是进一步提高微生物修复效果的可行方法。在本研究中,我们使用枯草芽孢杆菌 MSC4 筛选葡萄糖酸钠的刺激,从而促进 B[a]P 降解。基于生化和转录组学分析,发现葡萄糖酸钠显着增加 MSC4 的生物量和参与 B[a]P 降解的大多数基因的表达。中枢碳代谢、脂肪酸β氧化和氧化磷酸化活性均得到促进。酸诱导的草酸盐脱羧酶表达的显着增加表明细胞内 pH 值降低,从而促进了乙偶英和乳酸的合成。参与氮循环的基因,尤其是硝化和反硝化,显著上调,导致 B[a]P 降解。参与合成酶辅因子(包括硫胺素、钼辅因子、NAD 和血红素)的基因上调,这有助于增加代谢途径中的酶活性。鞭毛组装、趋化性和脂肽合成中基因的上调有利于 B[a]P 的溶解和摄取。与糖转运系统相关的基因上调,这促进了 MSC4 对单糖和寡糖的转运和吸收。 本研究为葡萄糖酸钠在多环芳烃污染部位治理中的进一步应用提供了理论依据。