当前位置:
X-MOL 学术
›
Landsc. Urban Plan.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Land subdivision in the law's shadow: Unraveling the drivers and spatial patterns of land subdivision with geospatial analysis and machine learning techniques in complex landscapes
Landscape and Urban Planning ( IF 7.9 ) Pub Date : 2024-05-14 , DOI: 10.1016/j.landurbplan.2024.105106 Jorge Herrera-Benavides , Marco Pfeiffer , Mauricio Galleguillos
Landscape and Urban Planning ( IF 7.9 ) Pub Date : 2024-05-14 , DOI: 10.1016/j.landurbplan.2024.105106 Jorge Herrera-Benavides , Marco Pfeiffer , Mauricio Galleguillos
Land subdivisions, especially in rural areas, pose a significant threat to sustainable development in many regions of the world. This issue is particularly challenging to understand in complex landscapes, where many biophysical and anthropic drivers interact without the necessary land regulatory guidance. We combined kernel density analysis and machine learning modeling to unravel the spatial patterns of land subdivisions and the complex relationships between their drivers. We used the Los Lagos region in southern Chile as a study case because it is a global biodiversity hotspot where land subdivisions are constantly increasing. We identify a significant increasing trend of subdivisions. Our modeling approach showed robust performance with an R of 0.727, RMSE of 5.109, and a bias of −0.009. The proximity to urban areas, to the coast, distance to electric mains, demographic structure, and proximity to protected areas were significant predictors of land subdivision. Fertile lands, particularly those near urban centers, have become prime targets for subdivisions, exacerbating the conflict between urban development and agricultural sustainability. We highlight the increasing number of subdivisions on threatened ecosystems and highly productive soils. We discuss the interrelationship between the drivers and conclude that subdivision is primarily associated with conventional urban sprawl, although other urbanization phenomena could also be observed in some areas. These findings provide challenges and opportunities for global spatial planning and harmony with biodiversity conservation.
中文翻译:
法律阴影下的土地细分:通过复杂景观中的地理空间分析和机器学习技术揭示土地细分的驱动因素和空间模式
土地细分,特别是农村地区的土地细分,对世界许多地区的可持续发展构成重大威胁。在复杂的景观中理解这个问题尤其具有挑战性,因为在复杂的景观中,许多生物物理和人为驱动因素在没有必要的土地监管指导的情况下相互作用。我们结合核密度分析和机器学习建模来揭示土地细分的空间模式及其驱动因素之间的复杂关系。我们以智利南部的洛斯拉各斯地区作为研究案例,因为它是全球生物多样性热点地区,土地细分不断增加。我们发现细分市场呈显着增长趋势。我们的建模方法表现出稳健的性能,R 为 0.727,RMSE 为 5.109,偏差为 -0.009。与城市地区、海岸的接近程度、与电力干线的距离、人口结构以及与保护区的接近程度是土地细分的重要预测因素。肥沃的土地,特别是靠近城市中心的土地,已成为细分的主要目标,加剧了城市发展与农业可持续发展之间的冲突。我们强调受威胁的生态系统和高产土壤的细分数量不断增加。我们讨论了驱动因素之间的相互关系,并得出结论,细分主要与传统的城市扩张有关,尽管在某些地区也可以观察到其他城市化现象。这些发现为全球空间规划以及与生物多样性保护的和谐提供了挑战和机遇。
更新日期:2024-05-14
中文翻译:
法律阴影下的土地细分:通过复杂景观中的地理空间分析和机器学习技术揭示土地细分的驱动因素和空间模式
土地细分,特别是农村地区的土地细分,对世界许多地区的可持续发展构成重大威胁。在复杂的景观中理解这个问题尤其具有挑战性,因为在复杂的景观中,许多生物物理和人为驱动因素在没有必要的土地监管指导的情况下相互作用。我们结合核密度分析和机器学习建模来揭示土地细分的空间模式及其驱动因素之间的复杂关系。我们以智利南部的洛斯拉各斯地区作为研究案例,因为它是全球生物多样性热点地区,土地细分不断增加。我们发现细分市场呈显着增长趋势。我们的建模方法表现出稳健的性能,R 为 0.727,RMSE 为 5.109,偏差为 -0.009。与城市地区、海岸的接近程度、与电力干线的距离、人口结构以及与保护区的接近程度是土地细分的重要预测因素。肥沃的土地,特别是靠近城市中心的土地,已成为细分的主要目标,加剧了城市发展与农业可持续发展之间的冲突。我们强调受威胁的生态系统和高产土壤的细分数量不断增加。我们讨论了驱动因素之间的相互关系,并得出结论,细分主要与传统的城市扩张有关,尽管在某些地区也可以观察到其他城市化现象。这些发现为全球空间规划以及与生物多样性保护的和谐提供了挑战和机遇。